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Abstract
Dealing with confusing samples in image classification based model

by Jiarui XIE

Guaranteeing the model trained by in-domain samples to make correct and reliable
predictions when encountering confusing samples in the open world is an inevitable
component of image classification based models. Consequently, three novelty methods
based on uncertainty estimation and partial classification, respectively, are proposed. The
thesis scope is limited to the image classification, and the confusing sample contains out-
of-domain, and imprecise samples.

Uncertainty estimation is a straight approach adopted to detect confusing samples.
The uncertainty estimation method can calculate a scalar value representing the uncer-
tainty, then detect confusing samples by comparing to a pre-defined threshold. In the first
part of this thesis, a Subjective Logic based Uncertainty Estimation method (SLUE) is pro-
posed by extending the existing method named Evidential Deep Learning (EDL). Com-
pared with the EDL that overlooked the advantages of the base rate, the SLUE method
takes the base rates explicitly into account. The base rate in SLUE is used to guide the
training process in the desired direction.

Through uncertainty estimation, we can decide whether to reject or accept a predic-
tion. However, it is more reasonable to predict a subset for cautious decision-making.
Consequently, a Partial Classification derived from Model Output (PCMO) is proposed
in the second part. The PCMO method can assign beliefs to nested subsets under the
Dempster-Shafer Theory (DST). That can alleviate the exponential increase in the subset
number brought by the increase of the class number. Compared with the existing meth-
ods, the PCMO method shows a simple and scalable framework. On the one hand, the
PCMO method is fulfilled only based on the model output that can be applied to any
pre-trained convolutional neural networks, without any demand to retrain the model
or conduct any further modifications. On the other hand, by considering good features
of the log function and analyzing the regular pattern of model output, a novel and rea-
sonable transformation from model output to possibility distribution is proposed. One
weakness of the PCMO method is that it cannot provide beliefs for the empty set and
the entire set. Consequently, we rethink the possibility calculation process in the PCMO
method and proposed a new method named PCBS that combines the DST and the bell-
shaped function (BSF). In which, the BSF is responsible for the possibility calculation by
taking the information provided by the training output. By doing that the model is able
to assign beliefs to the empty set and the entire set leading to the ability to distinguish
between the out-of-domain samples and imprecise samples.

Partial classification, Uncertainty estimation, Dempster-Shafer theory, Subjective logic, Con-
fusing sample, Dirichlet distribution, Bell-shaped function
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Résumé
Traitement d’échantillons confus dans un modèle basé sur la classification d’images

par Jiarui XIE

Pour les modèles basés sur la classification d’images, il est important de garantir que
le modèle entraîné par des échantillons du domaine fasse des prédictions correctes et
fiables lorsqu’il rencontre des échantillons confus. Par conséquent, trois nouvelles méth-
odes entourant l’estimation de l’incertitude et la classification partielle, respectivement,
sont proposées. La portée de la thèse est limitée au modèle basé sur la classification
d’images, et l’échantillon confus contient des échantillons hors-domaine et imprécis.

La stratégie d’estimation de l’incertitude peut calculer une valeur représentant
l’incertitude prédictive, puis détecter les échantillons confus en les comparant à un seuil
prédéfini. Dans la première partie de cette thèse, une méthode d’estimation d’incertitude
basée sur la logique subjective (SLUE) est proposée en étendant la méthode existante
nommée Evidential Deep Learning (EDL). Par rapport à l’EDL qui négligeait les avan-
tages du taux de base, la méthode SLUE prend explicitement en compte les taux de base.
Le taux de base dans SLUE est utilisé pour guider le processus de formation dans la
direction souhaitée.

Grâce à l’estimation de l’incertitude, nous pouvons décider de rejeter ou d’accepter
une prédiction. Cependant, il est plus raisonnable de prédire un sous-ensemble pour
une prise de décision prudente. Par conséquent, une classification partielle dérivée
de la sortie du modèle (PCMO) est proposée dans la deuxième partie. La méthode
PCMO peut attribuer des croyances à des sous-ensembles imbriqués selon la théorie de
Dempster-Shafer (DST). Cela peut atténuer l’augmentation exponentielle du nombre de
sous-ensembles due à l’augmentation du nombre de classes. Comparée aux méthodes
existantes, la méthode PCMO présente un cadre simple et évolutif. D’une part, la méth-
ode PCMO est remplie uniquement sur la sortie du modèle qui peut être appliquée à
n’importe quel réseau neuronal convolutif pré-entraîné, sans qu’il soit nécessaire de réen-
traîner le modèle ou d’effectuer d’autres modifications. D’autre part, en considérant les
bonnes caractéristiques de la fonction log et en analysant le modèle régulier de la sortie
du modèle, une transformation nouvelle et raisonnable de la sortie du modèle en distri-
bution de possibilités est proposée. Une faiblesse de la méthode PCMO est qu’elle ne
peut pas fournir de croyances pour l’ensemble vide et l’ensemble entier. Par conséquent,
nous avons repensé le processus de calcul des possibilités et proposé une nouvelle méth-
ode appelée PCBS qui combine la DST et la fonction en forme de cloche. Dans ce cas, la
fonction en forme de cloche est responsable du calcul des possibilités en prenant les infor-
mations fournies par la sortie de formation. Ce faisant, le modèle est capable d’attribuer
des croyances à l’ensemble vide et à l’ensemble entier, ce qui permet de distinguer les
échantillons hors-domaine des échantillons imprécis.

Classification partielle, estimation de l’incertitude, théorie de Dempster-Shafer, logique sub-
jective, échantillon confus, distribution de Dirichlet, fonction en forme de cloche.
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Chapter 1

Introduction

In this chapter, we first introduce real-life problems caused by confusing samples and
show motivations for dealing with them. The uncertainty caused by confusing sam-
ples is the root of these problems. Consequently, we give an introduction of uncertainty
including two uncertainty types, six uncertainty sources, and the classical uncertainty
quantification methods. Two main approaches, i.e., uncertainty estimation, and partial
classification are introduced to cope with confusing samples in this thesis. In addition,
the study subjects, existing challenges, contributions, and organization of this thesis are
presented.

1.1 Confusing sample introduction

1.1.1 The real-life problems caused by confusing samples

Over the last decades, Artificial Intelligence (AI) has reached almost every science field
and become a crucial part of various real-life applications. Generally, Neural Network
(NN)s or models (the Neural Network and model are interchangeable in this thesis) are
trained and tested in the closed world. The closed world hypothesis claims that all test-
ing classes have been presented to the model during the training process, i.e., the closed
world represents a predefined, closed set of classes. In contrast, the open world [BB15]
delegates a continuous and evolving environment, that is to say, the training dataset is
incomplete. The open world hypothesis requires the model can continuously update and
be robust to unknown or unseen classes. It is challenging when the trained model ex-
posure to the open world. In particular, for safety-critical applications, e.g., autonomous
driving, it is significant for the model to detect unknown samples instead of wrongly
classifying them to one of the training classes. The first autonomous driving accident
in human history occurred in 2016 when a Tesla vehicle hit a white truck turning left at
full speed [Ele16]. The post-incident investigation revealed several reasons, one of which
was that the autopilot system recognized the white truck as a cloud in the sky [Ele16].

Similar to the Tesla accident, a Uber vehicle collision happened because the autopilot
system failed to recognize a walking pedestrian [eco18]. In these two examples, both the
white truck and the walking pedestrian were confusing samples. The autopilot system
did not recognize the potential risk, which in turn led to the accidents. Another well-
known issue caused by AI is that an African Americans’ photo is misclassified as gorillas
have led to racism [KG17] over the world.

From the above examples, we can see it is a catastrophe "when the model does not
know when it does not know". The main motivation of this thesis is to enable the model to
identify confusing samples, improve the model’s robustness, and reduce the classification
risk.



2 Chapter 1. Introduction

FIGURE 1.1: An example of a white trunk, which might be classified as a cloud by the autopilot
system.

1.1.2 Two confusing sample categories

In this thesis, we focus on three type samples, the In-Domain (ID), Imprecise (IM), and
Out-of-Domain (OOD) sample. The definition of the domain is similar to the state space
indicated in Section 2.2. It is composed of the training dataset. The ID sample repre-
sents the training sample. In addition, datasets always contain confusing samples, as
remarked by [DM93, Den00, Den97], there are two branches, i.e., the IM and OOD sam-
ple, as demonstrated in Fig. 1.2.

1. The IM sample locates at the intersection of several classes occupies a high risk of
misclassification due to the equal probabilities for several classes.

2. The OOD sample represents the samples that are different from the training sam-
ples, which have two typical sources.

• The OOD sample corresponds to an outlier situated at a large distance from
each of the training classes.

• The OOD sample might also come from samples that are not represented in the
training dataset. This may happen for various reasons. For example, certain
faults in technological systems, some classes correspond to states of nature
that are too dangerous or too costly to obtain, or some classes have never been
observed and are not even conceived by the user.

1.1.3 Dealing with confusing samples

Suppose the state space Ω = {ω1, · · · , ωK} with K training classes. Under the classical
context, i.e., the precise or determinable classification, the trained model fθ needs to clas-
sify a testing sample x∗ into one of the K training classes. In this thesis, the bold type
corresponds to vectors, and the normal type relates to scalar variables. The model out-
puts are fed into the softmax layer to get the probability distribution that satisfies the
additivity principle Eq. 1.1. Then, the model make classification based on the predefined
decision rule M(·) so that M(x∗) = ŷ means that based on the decision rule a testing
sample x∗ is classified into class ŷ.

∑
ω∈Ω

P(ω) = 1, (1.1)

where P represents the probability distribution over Ω.
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FIGURE 1.2: An example of various samples. The different samples are assigned to different
partitions.

For decision-making, the most familiar and widespread method is to choose the class
with the maximum probability Eq. 1.2.

ŷ = max(P). (1.2)

In addition, we can define the decision risk R for each ground-truth label or "act"
which means picking one class from the training classes. Then choose the label or act
with the minimum risk as the prediction.

ŷ = min({R(y1), · · · ,R(yK)}), R(y) = ∑
ω∈Ω

ℓ(y | ω)P(ω), (1.3)

where ℓ(y | ω) represents the loss given the ground-truth label y and chooses the ω as
the prediction. The commonly used loss is "0-1" loss.

The situation is more complicated when the confusing sample participates because
there is even not a proper class for them to settle. To deal with confusing samples, we
adopted two methods, i.e., uncertainty estimation and partial classification. The Fig. 1.3
shows different actions for the two methods when feeding a confusing sample, i.e., a car
image, into the trained NN based on the dataset containing cat, dog, and bird classes.

In the view of uncertainty estimation, if the obtained uncertainty u is greater than a
predefined threshold δ, the input sample will be classified into the empty set. Otherwise,
execute the classification based on the probability distribution.

On the other hand, partial classification means classifying an input sample into a class
subset. It needs to calculate a value called belief or utility for each subset. Then a subset
is selected as prediction based on different decision-making strategies. In this thesis, we
calculate belief based on Dempster-Shafer Theory (DST) for class subsets and choose the
one with maximum belief as the prediction.
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FIGURE 1.3: An example of dealing with confusing samples. The model is trained based on a
dataset containing cat, dog and bird classes. Suppose, during the testing phase, the model en-
counters a car image. For uncertainty estimation, the model will calculate a value to determine
whether to reject the sample or not. For partial classification, it can assign belief to the class

subset, then choose the subset with maximum belief as the prediction.

1.2 Uncertainty introduction

1.2.1 Two uncertainty categories

The predictive uncertainty is in general separated into data (statistical or aleatoric) un-
certainty and model (systemic, distributional, or epistemic) uncertainty. The data un-
certainty is inherent in the training dataset and describes the confidence in the training
dataset. The noise in the dataset or the overlapping among classes can lead to data uncer-
tainty. It cannot be reduced by adding more data. The model uncertainty rises due to the
model itself, which describes the confidence of the prediction. The model structure, over-
fitting, or underfitting is the reason for this type of uncertainty. The model uncertainty
can be reduced by adding more training data and optimizing the model sufficiently. The
uncertainty brought by the confusing samples belongs to the data uncertainty. This is
because the model is assumed to be sufficiently trained in a closed world and is not ex-
posed to all possible samples. The Fig. 1.4 gives examples based on regression to help
understand each type of uncertainty.

1.2.2 Six uncertainty sources

Understanding the uncertainty source is a prerequisite to dealing with uncertainty. Sev-
eral literatures [KV18, LW21, GTA+21] propose diverse classifications of the sources. In
[KV18], authors propose separating the uncertainty source into three major branches,
model fit, data quality, and scope compliance as shown in Fig. 1.5. Whereas model fit
focuses on the uncertainty caused by the error in model outputs. The data quality covers
the uncertainty caused by dealing with input data obtained in suboptimal conditions.
And, the scope of compliance covers situations where the model is likely applied outside
the scope for which it was trained. Authors in [LW21] start with the posterior probability
distribution P(y | x, θ) claim that the uncertainty source resides in the data (x, y) and the
model fθ, sumarized seven sources, e.g, the data, hyperparameters.
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(A) The dataset. (B) The data uncertainty. (C) The model uncertainty.

FIGURE 1.4: Visualization of the data and model uncertainties based on regression [KG17]. The
shadow blue region represents the data or model uncertainty. As we can see, the OOD testing
samples and the scatted imprecise training samples lead to high data and model uncertainty.

FIGURE 1.5: Onion layer of uncertainty sources proposed in [KV18].

Similar to [KV18] and based on [GTA+21], we summarize three different steps from
data acquisition to confusing sample classification for the image classification based
model.

1. The data acquisition process. Acquiring raw data with artificial measurements or
equipment from the open world. Then process the raw data, e.g., resize the image,
annotation, and make it ready for further model training.

2. The model training process. Designing a model according to the practical scenario.
Training the model and decide the optimum model configurations, e.g., parameters.

3. The confusing sample classification process. Feeding testing samples into the
trained model, and execute uncertainty estimation or partial classification based
on the outputs and information provided by the model.

In general, these three steps contain six potential uncertainty sources, which again
affect the final prediction. The first three sources lead to data uncertainty while the last
three sources result in model uncertainty.

Source 1 (Uncertainty inherits to the open world) It is well known that the environment is
complicated that can be reflected in temperature, humidity, light, etc. These factors, in turn, affect
the accuracy and reliability of sample representations. For example, a photo taken in a dimly lit
state is completely different from a photo taken in a well-lit state. At the same time, the harsh
environment might affect the equipment, so the quality of the acquired data becomes poor and
contains noise. Finally, the environment might make it too dangerous or costly to acquire data.
This might lead to an imbalance dataset, and influence the model training further.
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Source 2 (Uncertainty inherits to the data acquisition) The data acquisition requires two
steps, generally. The first is to collect information about the samples, and the second is to an-
notate the samples. Most of the sample information is collected using sensors, such as sound,
humidity, and temperature. These artificially manufactured sensors generate more or less noise,
which is difficult to distinguish and difficult to reduce. In addition, the mistake in the annotation
can also lead to noise.

Source 3 (Uncertainty caused by confusing samples) Classification uncertainty occurs
when multiple classes have similar probabilities for IM samples, or testing samples are OOD. It
is due to the mismatch between the training and testing dataset. For example, a car image is an
OOD sample to a cat-dog model while a dog image that comes from a new breed might be an IM
sample.

Source 4 (Uncertainty inherits to the model’s architecture) The model architecture has a
distinct impact on prediction accuracy and uncertainty. For example, deeper models bring higher
accuracy, but also face the risk of overfitting which is a cause of uncertainty. Also, various neu-
ral networks, such as Convolutional Neural Network (CNN), and Multilayer Perceptron (MLP),
have their own characteristics and use context. An inappropriate architecture can affect the ac-
curacy of the prediction and result in high uncertainty. Besides, the inductive assumptions about
the NN might also lead to uncertainty.

Source 5 (Uncertainty inherits to the training process) Model training is a stochastic pro-
cess since it can bring different models due to different configurations. There are many parameters
that affect training, such as learning rate, dropout rate, and batch size. It is difficult to guarantee
the model reaches the global optimum instead of a local one.

Source 6 (Uncertainty inherits to the inference process) Uncertainty also arises during
the inference process. These uncertainties include the migration of the platform, for example,
from Windows to Linux. The second might be due to improper usage, e.g., a hyperparameter is
forgotten to be turned off or on. The third may be due to the trained model being applied in a
context for which it was not intended. These errors are mostly human controllable and in this
thesis, it is assumed that such errors will not occur.

1.2.3 Uncertainty modeling

This section gives standard uncertainty modeling approaches for two introduced uncer-
tainties, i.e., model uncertainty and data uncertainty. The expansion of these approaches
and their applications will be discussed in Section 3.1.

Both data uncertainty and model uncertainty are reflected in the model prediction
which is so-called predictive uncertainty Eq. 1.6. The model uncertainty is formalized
as a probability distribution over the model parameters θ, while the data uncertainty
is formalized as a probability distribution over the model outputs o = fθ(x). Define a
traning dataset Dtrain = {xi, yi}N

i=1 with K classes. The aim is to optimize the parameters
θ, to ensure the model can produce the desired output. To achieve this, the Bayesian
approach defines a model likelihood P(y | x, θ). For classification, the softmax likelihood
can be used:

P(y | x, θ) =
exp ( fθ(x))

∑K
i=1 exp ( fθ(xi))

. (1.4)

The posterior distribution P(θ | x, y), for a given dataset by applying Bayes’ theorem
can be written as:
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FIGURE 1.6: The confusing sample classification pipeline and underlying uncertainty sources.
The blue boxes indicate the six possible sources of uncertainty in each step. The red line repre-

sents the data flow among each source.

P(θ | x, y) =
P(y | x, θ)P(θ)

P(y | x)
. (1.5)

For a given testing sample x∗, the predictive class label ŷ with regard to the P(θ | x, y)
can be predicted:

P (ŷ | x∗, x, y) =
∫

P (ŷ | x∗, θ)︸ ︷︷ ︸
Data

P(θ | x, y)︸ ︷︷ ︸
Model

dθ. (1.6)

1.3 Research subjects and challenges

In this thesis, we focus on the problem of how to detect confusing samples and make the
right classification to improve model robustness and reduce the misclassification risk.
Overall, we consider two categories:

• Uncertainty estimation which has an enormous need in various industries for dif-
ferent applications and model architectures. Based on it, we propose to compute a
scalar value representing uncertainty and decide whether to reject the input sam-
ple. By rejecting the confusing samples, it is possible to reduce the classification
error and the consequent risk of misclassification.
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• Partial classification is another perspective to deal with confusing samples, which
can classify the confusing samples into subsets. It is valuable since rejecting a sam-
ple according to a scalar value sometimes is undesirable in many cases, e.g., au-
tonomous during, and medical images classification. This thesis aims to propose
simpler and more efficient methods to fulfill partial classification only based on the
model output. These methods can provide evidence for subsequent manual classi-
fication and make more cautious predictions.

We introduce difficulties [Man20] and challenges of the two introduced research sub-
jects in the context of image classification based models.

1. Insufficient of the point estimation. The CNN based image classification model
merely produces point estimations as outputs without any measure of uncertainty.

2. Overfitting inherits to the softmax function. Due to the additivity principle of
the softmax function, even feeding an OOD sample, the model will still generate a
probability for each training class. These probabilities will lead to overfitting and
misclassification.

3. Insufficient usage of the base rate. The Evidential Deep Learning (EDL) [SKK18]
is an approach of uncertainty estimation published on NIPS 2018, which is based
on the Subjective Logic (SL). It constructs a loss function by the mapping between
model parameters and the Dirichlet distribution. The model output is regarded as
evidence for uncertainty calculation. The advantage of SL compared to DST is the
introduction of the base rate, but the EDL method does not explicitly use the base
rate.

4. Requirement of the additional OOD dataset. Generally, the easiest way to de-
tect the OOD samples is to train the model by the ID and OOD samples. For in-
stance, energy socre [LWOL20] is one of the existing uncertainty estimation meth-
ods, which needs the additional OOD dataset to train the model. However, some-
times, the additional OOD dataset is not reachable.

5. Improper rejection. It is simple to reject a sample according to the calculated uncer-
tainty value. Sometimes despite the high uncertainty of a sample, direct rejection
will have the potential for unpredictable losses. For example, in situations such as
medical image classification and autonomous driving, it is proper to raise the high
uncertainty upwards and leave it to manual processing.

6. The inability the partial classification to distinguish between sample with "to-
tal ignorance" about its class membership, which needs to be classified into
the empty set, and sample with "total imprecision" about its class member-
ship, which needs to be classified into the entire set. The existing methods
[MD21, TXD21], tend to produce belief for the entire set, which will lose effective-
ness when the "total ignorance" and the "total imprecision" appear simultaneously.

7. Lack of interchangeability between the partial classification and the uncertainty
estimation. In reality, different scenarios have different requirements. For example,
in the task of identifying cats from dogs, it is sufficient to detect the OOD sample,
e.g., a car image. Whereas, for tumor image classification, tumor images need to be
partially classified into different class subsets in order to make cautious decisions.
Consequently, there is a demand for the combination of these two kinds of methods
to cope with various scenarios. Although, some methods based on the DST, e.g.,
[MD21, TXD21] have the ability, but they did not mention nor fulfill it yet.
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8. Practicality and conveniently. Both uncertainty estimation and partial classifica-
tion methods should be fast and packageable as an auxiliary module which can
be integrated on top of existing models. Consequently, these methods should not
introduce major architectural changes that would cause the retraining and hyper-
parameter tuning of the pre-trained model.

1.4 Contributions and organization

The outlines of this thesis are shown in Fig. 1.7 consisting of two parts. In part I, we
present one contribution for uncertainty estimation. In part II, we present two contribu-
tions for partial classification.

• Part I:

1. Uncertainty estimation based on subjective logic – SLUE [XCA21] Based on
the EDL method and taking the base rates explicitly into account, we proposed
the SLUE method which has been presented at the IJCNN2021 conference. The
initialization of the base rate is evaluated. A comprehensive analysis with
experiments is carried out. In addition, we explore and find the optimum
configuration of the hyperparameter C.

• Part II:

1. Partial classification based on DST – PCMO [XAC21] We fulfilled Partial
Classification only based on pre-trained Model Outputs (PCMO), by trans-
forming the model outputs to beliefs for predicted sets under the DST. The
most striking achievement is that the proposed method is fulfilled only based
on model outputs that can be applied to any model without any demand to
retrain the model or conduct any further modifications. By considering good
features of log function and analyzing the regular pattern of model outputs, a
novel and reasonable transformation from model outputs to possibility dis-
tribution is proposed. This led to a paper that has been presented at the
ICONIP2021 conference.

2. Partial classification based on DST and Bell Shaped Function (BSF) – PCBS.
We proposed a new partial classification method called PCBS, which combines
the BSF and the DST. First, generate the BSF based on the training output. Sec-
ond, the testing output is converted into the possibility under the obtained
BSFs. Finally, the possibility is transformed into the belief to perform par-
tial classification. Additionally, with the help of pignistic transformation, the
calculated belief can be converted into probability to achieve the uncertainty
estimation. This paper is under review by the Pattern Recognition journal.

The rest of this thesis is organized into five chapters:

• Chapter 2: the relative prerequisites to understand the proposed approaches, e.g.,
SL, DST, and BSF.

• Part I Chapter 3: A literature review concerning the recent advances in uncertainty
estimation approaches.

• Part I Chapter 4: Description of the proposed uncertainty estimation method.

• Part II Chapter 5: A literature review concerning the recent advances in partial
classification approaches.
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FIGURE 1.7: The contributions and organization of this thesis. The contributions of each chap-
ter are listed in bullet points.

• Part II Chapter 6: Description of the proposed partial classification methods.
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Chapter 2

Backgrounds

This chapter start with an introduction of Neural Network (NN)s, follows several uncer-
tainty reasoning frameworks including Dempster-Shafer Theory (DST), Subjective Logic
(SL), probability theory, fuzzy theory [Zad65], possibility theory [Zad99], and impre-
cise probability [Wal91]. Then the Dirichlet distribution, membership function, e.g., Bell
Shaped Function (BSF), and contrastive-center loss are presented. The Dirichlet distri-
bution or multivariate beta distribution is a continuous distribution over another dis-
tribution, it is used to approximate the distribution of the model outputs. The DST is
adopted to calculate the belief of predicted sets during the partial classification process.
We show the belief, plausibility, pignistic probability calculation, and belief fusion for
multi-agents. The SL is another uncertainty reasoning framework, which focuses on the
usage of the base rate, i.e., prior probability. Finally, the BSF is presented, which can per-
form the output to possibility transformation by mapping high-frequency values to one,
and low-frequency values to zero.

2.1 Multilayer perceptron and convolutional neural network

In this section, we introduced two NN architectures used in this thesis, i.e., Multilayer
Perceptron (MLP) and Convolutional Neural Network (CNN). Both two NNs are deter-
ministic NNs, the parameters are deterministic and each repetition of a forward pass
delivers an identical outcome. The NN in machine learning imitates the characteristics of
animal NNs. It relies on the complexity of the system to process information by adjusting
the relationship between a large number of internal neurons. The perceptron is the basis
of NNs. The MLP or CNN extends the perceptron by adding and redesigning multiple
hidden layers between the input and output layers. Let us start with an introduction of
the perceptron.

A perceptron as shown in Fig. 2.1 has d inputs corresponds to the input feature di-
mension, each of which associates with a weight θi. The inputs are summed within the
neuron after multiplying them with the weights. The summation result is subtracted
with the bias θ0. The result is eventually put into an activation function, which gives the
final output with 0 representing inhibition and 1 representing activation. A perceptron
can be trained by starting with random weights and iteratively applying the perceptron
to each training sample. Modifying the perceptron’s weights when it misclassifies the
sample Eq. 2.1. This process is repeated until reach the given iteration number.

θ← θ+ ∆θ, ∆θ = η(y− ŷ)x, (2.1)

where η represents the learning rate.
The multilayer perceptron as shown in Fig. 2.2 is a NN that contains at least one hid-

den layer and the output of each hidden layer is transformed by an activation function. In
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FIGURE 2.1: An example of the perceptron.

FIGURE 2.2: An example of the multilayer perceptron.

the classification problem, the cross-entropy function is usually used as the loss function.
And the optimum problem is solved using gradient descent or its variations.

Different from the MLP which can only process a set of discrete values. The CNN is
invented for image processing. It can effectively map the high dimensional images into
low dimensional discrete values while preserving image features. The Fig. 2.3 shows an
example of convolution process. Given an image sized 8× 8 and a need to perform edge
detection. We can design a filter or kernel of size 3× 3. Then, using this filter to cover the
image with a region as large as the filter. Summing up the values after multiplying the
corresponding values in the region as the extracted feature. Moving the filter by a prede-
fined stride and continue computing until every corner of the original image is covered.
The prevelant CNNs are LeNet [LBBH98], VGG [SZ15], GoogLeNet [SLJ+15], ResNet
[HZRS16], MobileNet [HZC+17]. LeNet [LBBH98] can be considered as the pioneer of
CNN with a total of seven layers. LeNet using a combination of three layers, i.e., convo-
lution, pooling, and nonlinear mapping to extract the spatial features. VGG [SZ15] was
proposed in 2014 by K. Simonyan et al, and the main feature is “very deep". The VGG
use the same size convolutional kernel (3 × 3) and pooling (2 × 2) throughout the net-
work. This connection of 3× 3 convolutional layers allows the network to have a smaller
number of parameters and the multi-layer activation function allows the network to learn
more about the features. GoogLeNet [SLJ+15] changes the previous model of sequential
computation by allowing multiple layers to operate in parallel then integrate them. The
use of different sized convolutional kernels implies different sized receptive fields and fi-
nally the fusion of features at different scales is achieved by stitching. The reason why the
convolution kernel sizes of 1, 3 and 5 are used is mainly to facilitate alignment. ResNet
[HZRS16] introduces a residual block used to solve the gradient explosion or gradient
disappearance. This residual block takes the activation value of one layer and directly
grabs it before the next layer. In order to deepen the structure of the network so that
each time finer features can be learned and thus improve the accuracy of the network,
one thing that needs to be achieved is a constant mapping. The MobileNet [HZC+17] is
a lightweight CNN proposed for embedded devices such as mobile phones. The main
innovation is the use of depthwise separable convolution, which is the decomposition of
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FIGURE 2.3: An example of the convolution process.

a standard convolution into a depthwise convolution and a pointwise convolution.

2.2 Dempster-Shafer theory

The DST or evidence theory [Dem67] was proposed by A.P. Dempster in the 1960s to
solve multi-valued mapping problems using lower and upper probabilities. It was fur-
ther expanded and improved by G. Shafer, who introduced the concept of the belief func-
tion and a set of belief fusion equations to deal with uncertainty reasoning, which is called
Dempster-Shafer Theory (DST) [Sha76]. The DST can represent uncertainty and is mainly
applied to information fusion [FXFL19, YCVPK21], expert systems [BCM01, MH12], and
decision analysis [HAAZ21, RGP18].

2.2.1 Basic concepts

Concept 1 (State space) The state space Ω is a domain consisting of a set of values ω which can
also be called states, events, outcomes, hypotheses, or propositions. The different values of a state
space are assumed to be exclusive and exhaustive. That means the state can only be in one of all
possible states included in the domain at any moment in time. A state space can be binary (with
exactly two values) or K-ary (with K > 2 values). For example, Ω = {ω1, . . . , ωi, . . . , ωK}
denotes the state space of K training classes, P = 2Ω represents the powerset of Ω composed by
all the subset of Ω including the empty set ∅, andR = 2Ω \ {∅, Ω} represents the hyperdomain
of Ω.

Concept 2 (Basic Belief Assignment (BBA)) The BBA or Basic Probability Assignment
(BPA) m : P → [0, 1] applied on a sample x measures the degree of belief that the ground-truth
label of x belongs to a subset A ∈ P . It satisfies the following constraint.

∑
A∈P

m(A) = 1, (2.2)

where for any A ∈ P , m(A) represents the belief that one of the classes in A is true. m(∅) = 0
represents normalized BBA, otherwise denotes unnormalized BBA.

If m is unnormalized, two preliminary methods can apply:

1. The Dempster’s normalization consists in dividing all the masses given to
nonempty sets by m(∅) [MD08].

m(A) =

{
m(A)

1−m(∅)
if A ̸= ∅,

0 otherwise.
(2.3)
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2. Yager’s normalization in which the mass m(∅) is transferred to m(Ω) [Yag96].

m(A) =


0 if A = ∅,

m(Ω) + m(∅) if A = Ω,
m(A) otherwise.

(2.4)

Concept 3 (The consonant BBA) The subset A such that m(A) > 0 is called the focal set of
m. When the focal set is nested, m is said to be consonant [DP82].

Concept 4 (The belief or credibility function) The quantity of the belief function bel(A)
can be interpreted as a global measure of one’s belief that hypothesis A is true.

bel(A) = ∑
B⊆A,B ̸=∅

m(B), m(∅) = 0, (2.5)

where B represents any subset that belongs to P .

Concept 5 (The plausibility function) The quantity of the plausibility function pl(A) can be
viewed as the amount of belief that could potentially be placed in A.

pl(A) = ∑
A∩B ̸=∅

m(B). (2.6)

Concept 6 (The pignistic transformation) The only transformation satisfying elementary ra-
tionality requirements to be the pignistic transformation [SK94] defined as Eq. (2.7), in which
m(A) is distributed equally among the elements of A for all A ∈ P .

BetP(ω) = ∑
ω∈A

m(A)

| A | , ∀ω ∈ Ω, (2.7)

where | A | denotes the cardinality of subset A.

For decision making, as we showed previously, a straightforward way is to choose
the class that occupies the maximum pignistic probability Eq. 2.8.

ŷ = max(BetP(ω1), · · · , BetP(ωK)). (2.8)

At the same time we can also make the decision by minimum the decision risk:

RBetP(ŷ) = ∑
ω∈Ω

ℓ(ŷ | ω)BetP(ω). (2.9)

In order to better understand the above concepts, we give the following example.
Suppose a sensor tries to recognize the color of an object at a long distance, which can be
only one of Ω = {red, blue, green}. After analysis, the sensor provides the correspond-
ing beliefs for each subset of Ω as demonstrated in the second column in the Table 2.1.
Calculating the belief and the plausibility values for each subset belonging to Ω based on
the BBA gives the third and fourth columns in the Table 2.1. Pick subset A = {red, blue},
its belief value is m({red}) + m({blue}) + m({red, blue}) = 0.35 + 0.25 + 0.06 = 0.66.
Also, its plausibility value is m({red}) + m({blue}) + m({red, blue}) + m({red, green}) +
m({blue, green}) + m(Ω) = 0.35 + 0.25 + 0.06 + 0.05 + 0.04 + 0.1 = 0.85. For subset A,
the closed interval [bel(A), pl(A)] indicating the confidence degree of A.
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P BBA bel pl

∅ 0 0 0
{red} 0.35 0.35 0.56
{blue} 0.25 0.25 0.45
{red, blue} 0.06 0.66 0.85
{green} 0.15 0.15 0.34
{red, green} 0.05 0.55 0.75
{blue, green} 0.04 0.44 0.65
Ω 0.1 1 1

TABLE 2.1: An example of basic belief assignment and the derived bel and pl values. A com-
posite subset such as {red, blue}, it means that the actual object color is either red or green, but

not both at the same time.

2.2.2 Uncertainty measurements

The entropy based measures are used to measure the uncertainty of BBA, Here we just
list several commons used for further reading please refer to [Den20, HK82].

Hohle entropy: uHohle = − ∑
A∈P

m(A) log2 bel(A),

Yager’s dissonance measure: uYager = − ∑
A∈P

m(A) log2 pl(A).
(2.10)

Beside, Yang et al. introduced in [YHD16] a new measurement based on belief inter-
vals.

uYang =
1
K

K

∑
i=1

(pl (ωi)− bel (ωi)) . (2.11)

2.2.3 Belief fusion

Suppose there are n BBAs, i.e., m1, . . . , mn. For any A ∈ P , the DST belief fusion rule is:

(m1 ⊕ · · · ⊕mn) (A) =
1

1− κ ∑
A1∩···∩An=A

m1 (A1) · · ·mn (An) , (2.12)

where κ Eq. (2.13) represents the conflict among different evidence provided by BBAs,
called conflict probability.

κ = ∑
A1∩···∩An=∅

m1 (A1) · · ·mn (An) . (2.13)

Taking the previous example Ω = {red, blue, green}, but suppose there are two sen-
sors that provide different beliefs for the object color as shown in Table 2.2.

At first, we can calculate the conflict probability κ = 0.98, then we can calculate the
fused BBA, bel, and pl values for each subset. Based on the fused belief, we can infer the
object’s color is red (or green).

κ = ∑
A∩B=∅

m1(A) ·m2(B)

= m1(red) ·m2(blue) + m1(red) ·m2(green) + m1(blue) ·m2(green)
= 0.98× 0.01 + 0.98× 0.98 + 0.01× 0.98 = 0.98.

(2.14)
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m1 m2 m12 bel pl

{red} 0.98 0.00 0.49 0.49 0.495
{blue} 0.01 0.01 0.015 0.015 0.02
{green} 0.00 0.98 0.49 0.49 0.495
Ω 0.01 0.01 0.005 1 1

TABLE 2.2: An example of belief fusion in DST. m1 represents the BBA of the first sensor, m2
represents the BBA of the second sensor, and m12 represents the fused BBA. The bel and pl

values are calculated from m12.

m1 ⊕m2({red}) = 1
1− κ ∑

A∩B={red}
m1(A) ·m2(B)

=
1

1− κ
[m1({red}) ·m2({red}) + m1({Ω}) ·m2({red}) + m1({red}) ·m2({Ω})]

=
1

0.02
× (0.98× 0 + 0.01× 0 + 0.98× 0.01) = 0.49.

(2.15)

2.2.4 Limitations of the DST

It is clear from the concepts presented above. The BBA is defined based on the power
set of Ω. On the one hand, it can give beliefs that can cover all sets without missing
any potential choice. On the other hand, this is a limitation of the DST. Consider the
classification as an example, the number of sets grows exponentially as the number of
classes increases. This undoubtedly increases the computational burden. An available
solution is to give belief to only some specific sets, e.g., sets composed of similar classes.

2.3 Subjective logic

The Subjective Logic (SL) [Jøs18] is an uncertain reasoning framework that was initially
introduced by A. Jøsang to address representations of trust. It is directly compatible with
probabilistic logic. The SL allows for more realistic modeling of real-world situations
and the conclusions drawn can more accurately reflect the uncertainty of the input sam-
ples. The analyst’s uncertainty and lack of evidence can be taken into account during the
analysis and expressed in the conclusion.

2.3.1 Basic concepts

There is some overlap concepts between DST and SL, e.g., state space, belief. The pre-
sented names are identical, however, they are mathematically different. We choose to
keep the names as they are defined in the book [Jøs18]. In addition, we also adopt the
same example "recognize object color by sensors" as used in Section 2.2 to explain the SL
concepts.

Concept 7 (Belief mass distribution) The belief mass distribution applies to the state space Ω
is defined as follows.

u + ∑
ω∈Ω

b(ω) = 1, b (ω) ∈ [0, 1], (2.16)
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where the uncertainty u can be regarded as the belief assigned to the state space itself. For example,
(b = (0.5, 0.1, 0.1), u = 0.3) represents the belief and uncertainty for object color give by the
sensor.

Concept 8 (Base rate distribution) The base rate or prior probability distribution a assigns
base rates to classes of Ω and respects the additivity principle expressed as:

∑
ω∈Ω

a (ω) = 1, a(∅) = 0, a (ω) ∈ [0, 1]. (2.17)

Given a state space Ω of cardinality K, the default base rate of each singleton value
in the state space is 1

K . In contrast to default base rates, it is possible and useful to ap-
ply realistic base rates that reflect real background probabilities in practical situations.
Base rates can also be dynamically updated as a function of observed evidence. From
a technical point of view, base rates are simply probabilities. From a semantic point of
view, base rates are non-informative prior probabilities estimated as a function of general
background information for a class of variables. Base rates make it possible to define a
bijective mapping between opinions and Dirichlet Probability Density Function (PDF),
and are used for probability projections [Jøs18]. Another interesting question about base
rate is whether base rate can be regarded as a kind of belief. It is an open question. In my
opinion, the base rate is a kind of belief in mathematical expression. The reason is that
the base rate respects the constraints declared by the belief. However, they have different
meanings, the base rate is a kind of prior probability, it represents the evidence without
any observations, while belief represents the posterior evidence with the observations.

2.3.2 Notations of opinions

Based on the basic concepts, we can introduce the composite function called "opinion"
defined by the SL. This thesis merely focuses on the multinomial opinion of the SL, i.e.,
opinions which are based on belief mass distributions over a state space Ω. For more
information about the other opinion formats, e.g., binomial opinion and hyper opinion
please refer to [Jøs18].

Concept 9 (Belief notation of opinions) A multinomial opinion over the state space Ω is an
ordered triplet S = {b, u, a}.

Concept 10 (Probability expectation function) Let S = {b, u, a} be a belief notation of
opinions, then the posterior probability expectation p from Ω to [0, 1] can be expressed as:

p = b + au. (2.18)

The belief mass on the whole state space u is the only belief mass to be distributed.
The base rate a represents the relative share that each element receives. It can be seen
that p satisfies the additivity principle:

∑
ω∈Ω

p(ω) = 1, p(∅) = 0. (2.19)

If we use the default base rate ( 1
3 , 1

3 , 1
3 ), then the probability obtained for object color

is (0.6, 0.2, 0.2). A weakness of the belief notation is that it does not directly reflect the
probability expectation values of the various elements in the state space. An intuitive
representation of multinomial opinions could be to represent the probability expectation
value directly, together with the degree of uncertainty and the base rate. This will be
called the probabilistic notation of opinions.
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Concept 11 (Probabilistic notation of opinions) Let S = {b, u, a} be a belief notation of
opinions, and the probability expectation p defined according to Concept. 10. The probabilistic
notation of opinions can then be expressed as the ordered tuple S = {p, u, a}.

Concept 12 (Probabilistic notation equivalence) Let Sb = (b, ub, ab) be an opinion ex-
pressed in belief notation, and Sp = (p, up, ap) be an opinion expressed in probabilistic notation,
both over the same state space. Then the following equivalence holds:

p = b + abub, up = ub, ap = ab. (2.20)

The evidence notation of opinions is centered around the Dirichlet multinomial prob-
ability distribution. In order to contain the base rate in the Dirichlet parameters, we
represent the Dirichlet multinomial distribution below according to Eq. (2.30).

Concept 13 (Augmented Dirichlet notation) Let Ω be a state space, r represent the evidence
vector over the elements of Ω, C represents a prior constant, and a represent the base rate vector
over the same elements. Then the multinomial Dirichlet density function over Ω can be expressed
in augmented notation as:

P(p | r, a) =
Γ
(

∑K
i=1 (ri + Cai)

)
∏K

i=1 Γ (ri + Cai)

K

∏
i=1

p(ri+Cai−1)
i . (2.21)

Concept 14 (Evidence notation of opinions) Let Ω be a state space, the evidence notation of
opinions can then be expressed as the ordered tuple (r, a).

Concept 15 (Evidence notation equivalence) Let Sb = (b, ub, ab) be an opinion expressed
in belief notation, and Se = (r, ae) be an opinion expressed in evidence notation, both over the
same state space. Then the following equivalence holds:

b =
r

C + ∑K
i=1 ri

, u =
C

C + ∑K
i=1 ri

. (2.22)

As we can see from the above equation, the hyperparameter C impacts the uncertainty
calculation. For a sample, if we fix the denominator, we can get a larger uncertainty. Of
course, it is not the case that a larger C is better. The larger the C for an In-Domain (ID)
sample the higher the probability of classifying it as Out-of-Domain (OOD). The effect of
C is also interpreted in Section 4.2.3.2.

Table 2.3 provides the equivalent interpretation for a set of multinomial opinions rep-
resented in belief notation, probabilistic notation, and evidence notation.

Belief notation Probabilistic notation Evidence notation

(b1, b2, b3), u, (a1, a2, a3) (p1, p2, p3), u, (a1, a2, a3) (r1, r2, r3), (a1, a2, a3)
(1, 0, 0), 0, ( 1

3 , 1
3 , 1

3 ) (1, 0, 0), 0, ( 1
3 , 1

3 , 1
3 ) (∞, 0, 0), ( 1

3 , 1
3 , 1

3 )
(0, 0, 0), 1, ( 1

3 , 1
3 , 1

3 ) ( 1
3 , 1

3 , 1
3 ), 0, ( 1

3 , 1
3 , 1

3 ) (0, 0, 0), ( 1
3 , 1

3 , 1
3 )

( 1
4 , 1

4 , 1
4 ),

1
4 , ( 1

3 , 1
3 , 1

3 ) ( 1
3 , 1

3 , 1
3 ),

1
4 , ( 1

3 , 1
3 , 1

3 ) (3, 3, 3), ( 1
3 , 1

3 , 1
3 )

TABLE 2.3: An example of three equivalent notations of multinomial opinion.
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2.3.3 Evidence opinions fusion

In order to provide an interpretation of opinion fusion in SL, consider the object color is
observed by two sensors. A distinction can be made between the two cases.

• Cumulative fusion: The two sensors observe the object’s color during disjoint time
periods. In this case, the observations are independent and it is natural to simply
add the observations from the two sensors.

• Averaging fusion: The two sensors observe the object’s color during the same time
period. In this case, the observations are dependent and it is natural to take the
average of the observations by the two sensors.

Let the two observers’ respective observations be expressed as r1 and r2. The evidence
opinions resulting from these separate bodies of evidence can be expressed as (r1, a) and
(r2, a) The cumulative fusion of these two bodies of evidence simply consists of the vector
addition of r1 and r2, expressed as:

(r1, a)⊕ (r2, a) = ((r1 + r2) , a) . (2.23)

The averaging fusion of these two bodies of evidence simply consists of averaging r1
and r2, expressed as:

(r1, a)⊕ (r2, a) =
(
(r1 + r2)

2
, a

)
. (2.24)

2.3.4 Comparison between SL with DST

Consider a domain Ω with its hyperdomain R(X) and powerset P(X), and ω denote a
specific value of R(X) or R(X). In DST, the belief assigned to state ω is indicated by
m(ω). It is possible to define a direct bijective mapping between the of DST and the
belief mass distribution of the SL, e.g., b(ω) [Jøs18], as following:{

m(ω) = b(ω), ∀ω ∈ R,
m(Ω) = u, otherwise.

(2.25)

Technically, the BPA of DST and the opinion notation of SL are somewhat equivalent.
The differences exist in interpretations. The SL can not assign belief to the domain Ω
itself. That is due to the Dirichlet model, where only observations of ω are counted as
evidence. The domain Ω itself can not be an observation, and hence can not be counted as
evidence. Another different point is that the base rate is not part of DST, so the pignistic
transformation uses the default base rate to calculate the probability.

There is also the common part, for example, both frameworks is definied based on
the state space. In addition, both DST and SL proposed several belief fusion operators.

2.4 Other uncertainty reasoning frameworks

In this section, we introduce the other four uncertainty reasoning frameworks, i.e., proba-
bility theory, fuzzy theory [Zad65], possibility theory [Zad99], and imprecise probability
[Wal91].
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2.4.1 Probability theory

Probability theory is a framework that is used to describe random events that satisfy the
additivity principle. The probability of a random event is a value between 0 and 1. The
magnitude of the value reflects the likelihood of the event’s occurrence. Depending on
the type of outcomes which can be discrete or continuous, the probability distribution is
said respectively discrete or continuous. For simplicity, we limit the review to the discrete
case. Based on the probability distribution, we can measure the uncertainty through
Shannon’s entropy [Sha01]. Table 2.4 give an example of probability distribution.

Probability distribution: P(ω) : Ω −→ [0, 1],

Additivity principle:
K

∑
i=1

pi = 1,

Uncertainty measurement: H (p) = −
K

∑
i=1

pi logv (pi) ,

(2.26)

where v is the base of the logarithm.

Color red green blue

Probability 0.2 0.3 0.5

TABLE 2.4: An example of the probability distribution of the object color.

2.4.2 Fuzzy theory

Different from the hard partition which forces a sample must belong to or exclude from a
class. The fuzzy theory [Zad65] can provide a membership measure of the degree that a
sample belongs to a class. A fuzzy set A in a state space Ω is characterized by a member-
ship function µA : Ω −→ [0, 1]. The value µA(ω) represents the degree of membership of
ω in A. For example, the statement "the object is red or green" is imprecise since we do
not know the exact color. To model this imprecision, a fuzzy set {red, green} can be used
by associating membership values indicating the possible color as Table 2.5.

Color red green blue

Fuzziness 0.5 0.4 0.1

TABLE 2.5: An example of the fuzziness distribution of each color given the fuzzy set
{red, green}.

The idea of measuring uncertainty of fuzzy set without reference to probabilities be-
gan in 1972 with the work of Deluca and Termini [DT72], who defined the entropy of
µA using Shannon’s functional form Eq. 2.27. For other measurements, we recommend
reading [PB94].

H(µA) = −β
K

∑
i=1

µA(ωi) logv µA(ωi) + (1− µA(ωi)) logv (1− µA(ωi)) , (2.27)

where β is a normalizing constant.
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2.4.3 Possibility theory

For a state space Ω, the possibility distribution π(ω) Eq. 2.28 measures the possibility
of each state ω ∈ Ω. The possibility can be crisp, i.e., 1 if a sample belongs to a class, 0
otherwise, or fuzzy, i.e., a larger value represents a larger possibility. For example, the
possibility of the object color is shown in Table 2.6.

Possibility distribution: π(x) : Ω −→ [0, 1]. (2.28)

Color red green blue

Possibility 1 (0.9) 1 (0.5) 0 (0.1)

TABLE 2.6: An example of the possibility distribution of the object color. The values outside
the brace indicate the crisp possibility while the values inside the brace indicate the fuzzy pos-

sibility.

2.4.4 Imprecise probability theory

The imprecise probability theory [Wal91] is also known as the upper and lower bound
probability theory, which claims the personal opinion of a statement should be expressed
by a bound instead of a single value. The Table 2.7 give a probability bound for each
color. Based on it we can derive the probability distribution by fixing two of them to
calculate the left one. And the uncertainty is measured by the difference between two
bounds.

Color red green blue

Possibility [0.5, 0.9] [0.2, 0.3] [0.1, 0.4]

TABLE 2.7: An example of the imprecise probability distribution of bound of each color.

2.5 Other backgrounds

2.5.1 Dirichlet distribution

The Dirichlet distribution was introduced in 1973 by Johann P. G. Lejeune Dirichlet and
has a variety of applications in fields such as computer vision [MG18, SKK18] and nat-
ural language processing [SCL19, MWZY20]. The conjugate nature of the Dirichlet dis-
tribution, which means the posterior distribution is the same distribution as the prior
distribution, makes the Dirichlet distribution often used as the prior distribution. There
are several constructions of the Dirichlet distribution, for example, the Pólya urn model
[Hop84]. Since the Dirichlet distribution is the promotion of the beta distribution in the
high dimensional case. Let us understand it starting with an example of the beta distri-
bution.

Consider a coin and we want to know whether it’s fair. Thus flip it three times, and
comes up heads all the time. According to the traditional probabilistic theory, the prob-
ability of head-up is 100% = 3

3 , which is contrary to our common sense of 50%, so we
think the coin is unfair. The concern is that three tosses are a tiny experiment that might
be a matter of luck. To deal with it, Bayes believes that before experimenting, one should
make assumptions about the probability of a head-up. For example, if one obtains 500
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heads and 500 tails from 1000 tosses, plus the three new results obtained, the probability
of head-up toss is 50.3% = 503

1000 , we can tell the coin is fair. However, if one obtained 900
heads and 100 tails from 1000 tosses, plus the three new results obtained, the probability
of head-up is 90.3% = 903

1000 , we can tell the coin is unfair. As we can see, different as-
sumptions will lead to different inferences. Thus how should we give a reasonable prior
distribution of head? The beta distribution determined by two parameters can give dif-
ferent prior distributions based on different parameters i.e., v1 and v2. That is to say, the
beta distribution Eq. (2.29) and Fig. 2.4a is a distribution over the probability of head-up.

From coin game to image classification, it is interesting to know the probability dis-
tribution over the training classes. In the binary case, it is determined by the beta dis-
tribution. In high dimensional case, it is determined by the Dirichlet distribution. The
Dirichlet distribution captures a sequence of observations of the K possible outcomes
with K positive real parameters α, each corresponding to one of the possible outcomes.
The Dirichlet PDF is then given by Eq. (2.30).

Γ(x) =
∫ +∞

0
tx−1e−t dt(x > 0),

P(x, a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1.
(2.29)

P(p | α) =
Γ
(

∑K
i=1 αi

)
∏K

i=1 Γ (αi)

K

∏
i=1

pαi−1
i , α > 0. (2.30)

(A) The beta PDF. (B) The Dirichlet PDF,
α = {10, 10, 100}.

(C) The Dirichlet PDF,
α = {50, 50, 50}.

(D) The Dirichlet PDF,
α = {1.5, 1.5, 1.5}.

FIGURE 2.4: An example of beta and Dirichlet probability density function.

2.5.2 Membership functions

The membership function gives the partial truth, i.e., a value between 0 and 1, to a state
in the state space. The names of the membership functions are given according to the
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(A) The BSF membership function. (B) The Gaussian membership function.

(C) The trapezoidal membership function. (D) The triangular membership function.

FIGURE 2.5: An example of four membership functions.

shape of the curve, i.e. bell-shaped, Gaussian, trapezoidal, and triangular membership
functions [TSH17].

The BSF is similar to the Gaussian distribution and is typically continuous and sym-
metric, matching both side values to zero, and the left part to one. As illustrated in
Fig. 2.5a. The BSF Eq. 2.31 depends on three parameters a, b and c. Among them, a de-
fines the range of values that will be matched to one; b defines the slope of the curve on
both sides of the central plateau, where a larger value results in a more steep transforma-
tion; c defines the center of the curve.

σBSF(x, a, b, c) =
1

1 + | x−c
a |2b . (2.31)

The Gaussian function is one of the most widespread and well-known functions, and
its variation Eq. 2.32 is used for membership calculation.

σGaussian(x, a, b) = exp−
1
2 (

x−a
b )

2

. (2.32)

Trapezoidal membership function has four parameters: a, b for feet and c, d for shoul-
ders expressed as Eq. 2.33.

σtrapezoidal(x, a, b, c, d) = max
(

min
(

x− a
b− a

, 1,
d− x
d− c

)
, 0
)

. (2.33)

The triangular membership function is the simplest shape among others. It is defined
by three parameters: a, c for feet, and b for the top of the curve expressed as Eq. 2.34.

σtriangular(x, a, b, c) = max
(

min
(

x− a
b− a

, 1,
c− x
c− b

)
, 0
)

. (2.34)
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2.5.3 The contrastive-center loss function

Give the training dataset Dtrain, the CNN based model fθ, the last hidden layer δn =
{δ1, . . . , δi, . . . , δh} and the output layer on = {o1, . . . , oi, . . . , oK}. In general, the empirical
loss LCE(x, y) over Dtrain has the following form:

LCE(Dtrain) =
N

∑
i=1

ℓ( fθ(xi), yi), (2.35)

where ℓ(·) is the cross-entropy loss function.
In order to improve the discriminative ability of the NN. In [QS17], introduced the

contrastive-center loss function Eq. (2.36). This new loss function simultaneously con-
siders inner-class compactness and inter-class separability by assessing the contrastive
values between: (1) the distances of training samples to their corresponding class cen-
ters, and (2) the sum of the distances of training samples to their non-corresponding class
centers.

LCC(Dtrain) =
1
2

N

∑
i=1

||xi − cyi ||2(
∑K

j=1,j ̸=yi
||xi − cyj ||2

)
+ β

, (2.36)

where the cyi denotes the yi class center, and β is a coefficient used for preventing the
denominator equals zero.

The final form of the loss function Eq. (2.37) is generated by integrating Eqs. (2.35) and
(2.36). The calculation steps are shown in Fig. 2.6. For the convenience of description, we
will refer to Eq. (2.37) as contrastive-center loss in the following.

L(Dtrain) = LCE(Dtrain) + λLCC(Dtrain), (2.37)

where λ is a balancing weight.

FIGURE 2.6: The framework of the contrastive-center loss function. The cross-entropy loss is
calculated based on the model output, while the contrastive-center loss is calculated based on

the last hidden layer output.

2.6 Conclusions

This section introduces some background knowledge that is going to be used in the fol-
lowing chapters. At first, the MLP and CNNs, e.g., VGG, GoogLeNet, ResNet, and Mo-
bileNet, are introduced. The uncertainty reasoning frameworks, such as SL and DST are
introduced. Both SL and DST can achieve uncertainty derivation and belief fusion. The
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difference is that the SL takes base rate into account, and the DST can give belief to the
empty set. The Dirichlet distribution used in SL is also presented, and it is used to con-
nect the model output with the uncertainty derivation. The BSF that converts the testing
output into possibility based on the training output is also introduced.
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Part I

Uncertainty estimation
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Chapter 3

A survey of uncertainty estimation

There are a sea of uncertainty estimation methods and applications. In this thesis, we only
focus on the uncertainty estimation for Convolutional Neural Network (CNN) based im-
age classification. Other methods such as regression and image segmentation are not dis-
cussed. As mentioned in Section 1.2.2 the uncertainty estimation can be part into three
steps, in this section the third step "the confusing sample classification process" can be
part into three more concise parts, i.e., input sample, model, and output. This is inspired
by the classical sample process: feed a sample into the Neural Network (NN) and per-
form further execution on the model outputs. Then we classify the existing uncertainty
estimation methods into these three categories.

1. Uncertainty estimation based on the input sample. Augmenting a single sample
into M samples. Feeding the obtained M samples into a certain model to get M
outputs to calculate the variation as uncertainty.

2. Uncertainty estimation based on the model. For a certain sample, we can ensemble
M different models, and use these M models to get M outputs for the same sample
to calculate the variation as uncertainty. For example, using dropout for a single
sample during the testing phase to get M outputs to calculate the variation. Alter-
nately, for a certain model, we can get M sets of parameters by sampling M times
from the model parameter distribution, and use these M weights to get M outputs
for the same sample to calculate the variation.

3. Uncertainty estimation based on the output. The uncertainty is directly computed
based on the model output.

An overview of three category methods is given in Fig. 3.1. In the following sub-
sections, the main ideas and further extensions of the three categories are presented and
discussed. Apart from an introduction of the related works, the commonly used mea-
surements, datasets and baseline are introduced.

FIGURE 3.1: An overview of existing uncertainty estimation methods.
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3.1 Related works

3.1.1 Uncertainty estimation based on the input sample

The testing dataset augmentation as shown in Fig. 3.2 is one of the simple uncertainty
estimation techniques. The idea of this method is to create multiple testing samples
from each testing sample by applying data augmentation techniques. Then test all
those samples to compute a predictive distribution in order to measure uncertainty.
Mostly, the testing dataset augmentations have been used in medical image process-
ing [WLOV18, WLA+19, MMKF+20, AB18]. Moshkov et al. [MMKF+20] used the test
time augmentation technique for cell segmentation tasks. Next, they used a majority
voting to create the final output segmentation mask and discuss the policies of applying
different augmentation techniques and how they affect the final predictive results of the
deep networks.

FIGURE 3.2: An example of the testing dataset augmentation method.

3.1.2 Uncertainty estimation based on the model

In a classical NN, weights or parameters are represented by single values and are often
learned using back propagation. Whereas, Bayesian Neural Network (BNN) [TLS89] as
shown in Fig. 3.3 represents weights in the form of distributions and use “Bayes by back-
prop" to learn the weight distributions. As introduced in Section 1.2.3, given a training
data-label pair (x, y), the posterior distribution over parameters is modeled by assuming
a prior distribution over the parameters and applying the Bayesian theorem. Once the
posterior distribution over the model parameters has been estimated, the predictive label
ŷ for a testing sample x∗ can be obtained by:

P (ŷ | x∗, x, y) =
∫

P (ŷ∗ | x∗, θ)︸ ︷︷ ︸
data

P(θ | x, y)︸ ︷︷ ︸
model

dθ. (3.1)

Here is a regression example that uses BNN to fit the underlying training data genera-
tor Fig. 3.4. As we can see, with the increase of the training sample, the model uncertainty
decrease.

The reasons that prevented the universal use of BNN is that the posterior distribution
p(θ | x, y) in Eq. (3.1) is difficult to calculate. Consequently, the Variational Inference (VI),
dropout methods are invented to approximate the posterior distribution.
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FIGURE 3.3: An example of Bayesian neural network.

(A) 20 training samples. (B) 50 training samples. (C) 100 training samples.

FIGURE 3.4: An example of model uncertainty based on Bayesian neural network.

FIGURE 3.5: An example of the Bayesian family method.



32 Chapter 3. A survey of uncertainty estimation

FIGURE 3.6: An example of variational inference method. Find a distribution to approximate
the latent distribution.

VI is a branch of Bayesian approximate methods that transforms the posterior dis-
tribution approximation problem into the distance optimization problem. Consider a
problem: given a dataset D and a known model form, the aim is to find the posterior
distribution P(θ | D) with latent variables θ. First, our original goal is to infer the re-
quired distribution P from the existing data. When P is not easy to express and cannot
be solved directly, we try to use the variational inference method. Find a distribution P1
that is easy to express and solve, and when the difference between P and P1 is small, P1
can be used as the approximate distribution P. In this process, the aim shifts from the
problem of finding the distribution to the optimization problem of reducing the distance.
Here is an example Fig. 3.6 used to better understand the above description. The yellow
distribution is our original target P, which is not easy to find. Since it looks a bit like a
Gaussian distribution, we try to find a distribution Pred and a distribution Pgreen from the
Gaussian distribution, calculate their overlapping areas and choose the similar one as the
approximate distribution of P.

The VI methods for BNNs have been pioneered by Hinton and Van Camp [HVC93]
where the authors derived a diagonal Gaussian approximation of the posterior distribu-
tion. Another extension has been proposed by Barber et al. [BB98], in which the full co-
variance matrix was chosen as the variational. Several modern approaches can be viewed
as extensions of this early works [HVC93, BB98] with a focus on how to scale the varia-
tional inference to modern NNs. Notable et al. [KSW15] introduced the local reparame-
terization trick to reduce the variance of the stochastic gradients. In order to make more
expressive variational distributions feasible for NNs, several works proposed to infer us-
ing the matrix normal distribution [ZSDG18, SCC17] or variants where the covariance
matrix is decomposed into the Kronecker products of smaller matrices or in a low rank
form plus a positive diagonal matrix.

Monte Carlo (MC) [Nea12] is another approximate method that is a slow and com-
putationally expensive method when integrated into a deep architecture. To combat this,
MC dropout has been introduced, which uses dropout [SHK+14] as a regularization term
to compute the uncertainty [GG16]. MC dropout makes the uncertainty estimation pro-
cess simple and easy to implement by randomly sampling from the model parameter
distribution. For a sample, MC dropout executes M dropouts to obtain M outputs. Then
M outputs are ensemble by calculating the variation representing the uncertainty. In
[ASKR18], two dropout methods, i.e. element-wise Bernoulli dropout [SHK+14] and
spatial Bernoulli dropout [TGJ+15] are implemented to compute the model uncertainty
in BNNs for the end-to-end autonomous vehicle control. The architecture of dropout
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method is presented in Fig. 3.7.

FIGURE 3.7: An example of the dropout method.

The Markov chain Monte Carlo (MCMC) method [Anz12] is a Monte Carlo inte-
gration using Markov chains. The basic idea is to construct a Markov chain so that its
smooth distribution is the posterior distribution of the parameters. The construction of
the Markov chain transfer kernel is crucial, and different methods of transfer kernel con-
struction will produce different MCMC methods. Commonly used transfer kernel con-
struction methods are Gibbs and Metropolis-Hastings sampling methods. Hamiltonian
Monte Carlo or Hybrid Monte Carlo (HMC) [DKPR87] is an important variant of MCMC
sampling method [Nea92]. The stochastic gradient MCMC (SG-MCMC) [CFG14] was
proposed to train CNNs. It only needs to estimate the gradient on small sets of mini-
batches. In addition, SG-MCMC can be converged to the true posterior by decreasing the
step sizes [DFB+14].

The goal of supervised learning is to learn a stable model that performs well in
all aspects. In practice, this is often not the case, but sometimes we can get mul-
tiple models that outperform in some aspects. The idea behind ensemble learning
[SR18, HS90] is that even if a classifier gets a wrong prediction, the other classifiers can
correct the error. Several works applying ensemble methods to different kinds of prac-
tical tasks and approaches, for example bioinformatics [CGYY20, NGB20], remote sens-
ing [DWWZ19, MD20], or reinforcement learning [KCD+18] can be found in the litera-
ture. In addition, ensembles are widely used for modeling uncertainty on predictions of
complex models. The deep ensemble [LPB17] uses the entire training dataset to train M
independent randomly initialized models. After the M independent models are trained,
the model predictions are fused as shown in Fig. 3.8. As for example in climate predic-
tion [LP07, Par13].

Besides the approaches described above, several other approaches exist. Raghu et
al. [RBS+19] recommended a direct uncertainty prediction and suggested training two
NNs. One for the prediction task and another one estimates the uncertainty of the first
NN. Similarly, Ramalho and Miranda [RM20] introduced an additional NN for uncer-
tainty estimation. But in contrast to [RBS+19], the representation space of the training
data is considered and the density around a given test sample is evaluated. The addi-
tional NN uses this training data density in order to predict whether the main network’s
estimate is expected to be correct or false.

3.1.3 Uncertainty estimation based on the output

For classification tasks, the output represents class probabilities. These probabilities are a
result of applying the softmax function. The classical and simplest uncertainty estimation
method based on softmax is estimated by the following equation.



34 Chapter 3. A survey of uncertainty estimation

FIGURE 3.8: An example of the deep ensemble method.

u = 1−max(σso f tmax(o)). (3.2)

Many uncertainty estimation approaches followed the idea of predicting the model
output distribution. Often, the loss function of such NN takes the expected divergence
between the true distribution and the predicted distribution into account. Dirichlet distri-
bution can represent the prior distribution of the class distribution and naturally is used
to interpret the uncertainty. The Dirichlet distribution is utilized in several approaches as
Dirichlet prior networks [MG18] and Evidential Deep Learning (EDL) [SKK18]. Dirichlet
prior NNs [MG18] are trained with the goal of minimizing the expected Kullback-Leibler
(KL) divergence between the In-Domain (ID) predictions (a sharp Dirichlet distribution)
and the Out-of-Domain (OOD) predictions (a flat Dirichlet distribution) [MG18]. As a fol-
low up, [MG19] discussed the case when the data uncertainty is high, the KL-divergence
can lead to an undesirable multi-model target distribution. In order to avoid this, they
use the reverse KL-divergence. The experiments showed improved results in the un-
certainty estimation as well as the adversarial robustness. The EDL [SKK18] optimize
the NN over a Dirichlet distribution parameterized by the based rate, prior constant,
and evidence. The loss function is derived by using subjective logic and interpreting the
model outputs as evidence then trying to infer the multinomial opinion for uncertainty
estimation. For the Dirichlet distribution based methods, the uncertainty type measured
depends on the method used. It measures the model uncertainty if the Dirichlet distribu-
tion is used to approximate the posterior probability. For other cases, e.g, deriving a new
loss function from the Dirichlet distribution, it contains both two uncertainty types.

Furthermore, several approaches can be applied to already trained NNs without af-
fecting the training and predicting processes. Temperature scaling is a very simple post-
processing step that helps to calibrate the model. For classification problems, the output
of the last layer is further passed to the softmax function to obtain the probability of each
class. This step is modified by temperature scaling Eq. 3.3. In [LLS17], a relatively sim-
ple approach based on small perturbations on the training dataset and the temperature
scaling calibration is presented leading to efficient differentiation of ID and OOD data.

σso f tmax(o) =
exp

( o
T

)
∑K

i=1 exp
( oi

T

) , (3.3)

where T represents the temperature scaling.
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FIGURE 3.9: An example of the Dirichlet distribution based method.

3.2 Measurements

In order to evaluate the uncertainty estimation performance, we summarize several ap-
proaches.

3.2.1 Classical measurements

Consider a classification task based on a dataset D with K different classes and a prob-
ability vector p for an input sample x. In order to evaluate the amount of uncertainty,
one can apply the entropy measures, which describe the average level of information of
a random variable.

H(p) = −
K

∑
i=1

pi log2 (pi) . (3.4)

The Mutual Information (MI) is another simple method that computes the expected
divergence between the stochastic softmax output distribution P1 and the expected soft-
max output distribution P2 to measure the uncertainty.

I(P1, P2) = ∑
P1,P2

P12 log
P12

P1P2
, (3.5)

where P12 is the joint distribution.

3.2.2 Complete dataset measurements

While the criteria described measuring the performance of an individual sample, others
evaluate the usage on a set of samples [HG17]. For that, the samples are split into two
sets, for example, ID and OOD or correctly and falsely classified. They we can define
precision, recall, True Positive Rate (TPR), and False Positive Rate 95 (FPR95) as shown
in Eq. (3.6). The two most common approaches are the Receiver Operating Characteristic
(ROC) curve and the Precision Recall (PR) curve. Both methods generate curves based on
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Prediction

P N
Ground-truth

label
P TP FN
N FP TN

TABLE 3.1: The confusion matrix.

different thresholds of the underlying measure. For each considered threshold, the Re-
ceiver Operating Characteristic (ROC) curve plots the TPR against the False Positive Rate
(FPR), and the Precision Recall (PR) curve plots the precision against the recall. While the
ROC and PR curves give a visual idea of how well the underlying measures are suited
to separate the samples, they do not give a qualitative measure. To reach this, the Area
Under the Curve (AUC) can be evaluated. For the evaluation of ID and OOD examples,
the FPR95, Area Under the Receiver Operating Characteristic (AUROC), and Area Under
the Precision Recall Curve (AUPRC) are commonly used [NHL20, MG18, MG19].

P =
TP

TP + FP
, R =

TP
TP + FN

, TPR =
TP

TP + FN
, FPR =

FP
FP + TN

. (3.6)

The FPR95 is a measure of accuracy, which is calculated as the fraction between the
number of false positives and the total number of negatives. It’s the probability that a
positive result will be given when the true value is negative. For example, FPR95 (the
smaller the better) means the false positive rate of OOD samples when the true positive
rate of ID samples is at 95%.

The AUROC (the bigger the better) tells whether the trained model can correctly rank
a random positive sample before a random negative sample. For a diagnosis model, an
AUROC of 0.7 means that the model has a good discriminatory ability, seventy percent
of the time, the model will correctly assign a higher risk to a patient with a symptom than
a patient without a symptom. The AUPRC (the bigger the better) denotes a high value
for both recall and precision criteria, where high precision associates with a small false-
positive rate, and high recall relates to a small false-negative rate. High scores for both
represent that the model does correct classification (high precision), as well as obtain a
majority of all positive results (high recall). The FPR95, AUROC, and AUPRC values are
calculated with the library shared by Liu et al.1.

3.2.3 Calibration measurements

The model calibration is used to keep the model prediction probabilities consistent with
the real probabilities. For classification models, such as Support Vector Machine (SVM),
their output does not represent the real probability. Thus, there is a need to use the
calibration algorithm to make the output consistent with the real probability. Here is
an example, according to the model output, the samples are divided into 10 bins, i.e.,
samples with a probability of 0 to 0.1 are grouped into one bin, those with a probability
of 0.1 to 0.2 are grouped into one bin, etc. The 10 bins are used as horizontal coordinates;
the percentage of positive samples in each bin as vertical coordinates, the graphs are
drawn from them can be used for evaluation Fig. 3.10. The reason why it works is that
according to the definition of probability, the percentage of positive samples should be
0.1 for the bin with 0.1 probability. Therefore, the reliability diagram is actually a measure
of whether the output probability of the model is consistent with the true probability.

1https://github.com/wetliu/energy_ood
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FIGURE 3.10: An example of the reliability diagram. (a) Reliability diagram showing an over-
confident classifier: the bin-wise accuracy is smaller than the corresponding confidence. (b)
Reliability diagram of an underconfident classifier: the bin-wise accuracy is larger than the cor-
responding confidence. (c) Reliability diagram of a well-calibrated classifier: the confidence fits

the actual accuracy for the single bins. These figures come from [GTA+21].

Approaches that reduce the model uncertainty, also lead to a better calibrated classi-
fier. This is because the remaining predicted data uncertainty better represents the actual
uncertainty on the prediction. For classification tasks, several calibration measures are
based on binning. The Expected Calibration Error (ECE) [NCH15, GPSW17, NCH15,
MWT+20] is defined by Eq. (3.7) was adopted. This groups the probability interval into
M bins with mi samples inside and assigns each predicted probability to the bin that en-
compasses it. The calibration error is the difference between the fraction of predictions
in the bin that are correct (accuracy) and the mean of the probabilities in the bin (confi-
dence).

ECE =
M

∑
i=1

mi

M
| acci− confi |, (3.7)

where acci and confi are the accuracy and confidence of bin i, respectively.

3.3 Datasets and baselines

In this section, we collect commonly used datasets and baselines for uncertainty estima-
tion. In the scope of this thesis, we only focus on the OOD detection of the image clas-
sification based model. The choice of datasets is mostly consistent among all reviewed
works. Most of the literature start with a toy dataset, i.e., the Blob, Moon, Circle datasets,
to explain the proposed method. The most common datasets for Out-of-Domain (OOD)
detection are Mnist [LCB10], Cifar10 [Kri12], Cifar100 [Kri12], Svhn [NWC+11], Lsun
[YZS+15], Texture [CMK+14], Places365 [ZKL+17], ImageNet and its tiny variant are
also studied frequently. When OOD detection is studied where models trained on Ci-
far10 [Kri12], Cifar100 [Kri12] are evaluated on Svhn [NWC+11], Lsun [YZS+15], Texture
[CMK+14], Places365 [ZKL+17]. Meanwhile, MNIST [LCB10] is paired with variants of
itself like notMNIST and FashionMNIST. Finally, the most commonly used baselines by
far are Softmax [HG17], MC Dropout [GG16], deep ensembles [LPB17] and temperature
scaling [LWOL20].
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3.4 Conclusions

This chapter introduces some uncertainty estimation methods, measurements, datasets,
and baselines. The commonly used methods are, for example, Bayesian based meth-
ods, deep ensemble methods, and Dirichlet distribution based methods. For Dirichlet
distribution based methods, there is always a need to reconstruct a loss function and
train the model, but the uncertainty can be derived directly from the model output. For
Bayesian based methods, one obvious weakness is the computation burden, but there are
several approximations invented to alleviate this challenge. The deep ensemble method
calculates the uncertainty based on the prediction of several models. Consequently, the
memory and computational consumption used for training several models can be the
bottleneck. Also, we introduce some measurements. The entropy and its variations focus
on the individual prediction. The FPR95, AUROC, and AUPRC focus on the evaluation
of a set of predictions. And ECE quantify the predictive uncertainty through the model
calibration. In addition, we also present the commonly used datasets and baselines.
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Chapter 4

Novelty uncertainty estimation
approach

Uncertainty estimation represents methods that can calculate an uncertainty value for an
input sample. By comparing the obtained value with a predefined threshold, the model
can decide whether to reject the input sample or not. The rejected sample is classified into
the empty set or the entire set for further manual process. Uncertainty estimation is one
of the most common and straightforward methods to deal with confusing samples. This
chapter starts with a description of the existing Evidential Deep Learning (EDL) method,
including the loss function used to train the model and the derivation of uncertainty from
the model output. The weakness of the EDL method is that the base rate is not explicitly
used. Consequently, we propose the SLUE method to train the model more effectively by
updating the base rate during the training process.

4.1 A brief introduction of the evidential deep learning

Before going deeper, let us recall the Subjective Logic (SL) concepts which have been
presented in the Section 2.3. Consider a state space Ω = {ω1, · · · , ωK} including K > 2
mutually exclusive states. A belief notation of opinions over the Ω is an ordered triplet
S = {b, u, a}. The b = {b1, · · · , bK} represents belief for each state in Ω and u denotes
the overall uncertainty, respect the following constrain:

u +
K

∑
i=1

bi = 1, u ≥ 0, bi ≥ 0. (4.1)

Then the posterior probability expectation function p : Ω −→ [0, 1] can be expressed
as:

p = b + ua =
α

∑K
i=1 αi

. (4.2)

The architecture of the EDL is similar to classical Convolutional Neural Network
(CNN). The only difference is that the softmax layer is replaced with an Rectified Lin-
ear Unit (ReLU) layer Eq. (4.3).

δReLU(x) =
{

x, x ≥ 0,
0, otherwise.

(4.3)

The ReLU ensures non-negative output, which is taken as the evidence vector (r =
δReLU(x)) for the Dirichlet distribution. Taking α = r + Ca = r + K 1

K = r + 1 as the
Dirichlet distribution parameters. With the mapping between belief notation of opin-
ion and Dirichlet Probability Density Function (PDF). We can calculate the belief b and
uncertainty u as show in Eq. (4.4).



40 Chapter 4. Novelty uncertainty estimation approach

b =
r

C + ∑K
i=1 ri

, u =
C

C + ∑K
i=1 ri

. (4.4)

In EDL, the author proposed an expected mean square loss function Eq. 4.5 to train
the model. In order to guarantee the total evidence should shrink to 0 when the input
sample cannot be correctly classified, a Kullback-Leibler (KL) divergence term is incor-
porated into the loss function that regularizes the predictive distribution by penalizing
those divergences from the "I do not know" state.

L(xi) =
K

∑
j=1

(
yij − pij

)2
+

pij
(
1− pij

)
(Si + 1)

,

L(Dtrain) =
N

∑
i=1
Li + λt

N

∑
i=1

KL
[

D (pi | α̂i) ∥D
(

pi | (
C
K

, . . . ,
C
K
)

)]
,

(4.5)

where K is the number of classes, N is the number of samples, yi = {yij | j = 1, . . . , K}
is a one-hot label of sample xi, pi = {pij | j = 1, . . . , K} is a vector representing class
assignment probabilities, Si = C + ∑K

i=1 ri, the annealing coefficient λt = min(1.0, t
10 ) ∈

[0, 1], t representing the current training epoch index, D
(

pi | ( CK , . . . , CK )
)

is the uniform
Dirichlet distribution, and α̂ = e(1 − y) + 1 represents the Dirichlet parameters after
removing the non-misleading evidence from predicted parameters.

The EDL can provide a more detailed uncertainty estimation model than the standard
softmax point estimation. The performance of the EDL method is evaluated through
Mnist [LCB10] and Cifar10 [Kri12] datasets based on the entropy criteria. The contribu-
tions of the EDL method contain the detection of Out-of-Domain (OOD) samples and
improved endurance against adversarial perturbations.

4.2 The proposed approach considering the base rate explicitly

4.2.1 Introduction

Currently, Neural Network (NN)s have a pivotal role in various applications of human
endeavor. It possesses an admirable prediction accuracy but less prediction confidence.
As an example, if we feed an image of car into a cat-dog NN, this image will be classified
as either being a cat or a dog rather than as being inappropriate. Obviously, to a human
being, this is lacking intelligence. To address this problem, we propose a new method
called Subjective Logic based Uncertainty Estimation (SLUE) [XCA21]. It is derived from
EDL [SKK18] based on SL by processing model outputs while giving uncertainty to each
prediction. The impetus behind this is that the SL boosts the traditional Dempster-Shafer
Theory (DST) in the sense that opinions take base rates into account, whereas DST ignores
base rates. With base rates, we can make good use of prior knowledge. At the same
time, it also makes it possible to define a bijective mapping between subjective opinions
and Dirichlet PDF [Jøs18]. With a bijective mapping, the uncertainty and probability
expectation formula can be easily derived.

In EDL, there is no explicit use of base rates because it just used the default base
rates nor analyze the potential initialization methods. In addition, the base rates is not
updated during the training process. The Dirichlet distribution parameters appeared in
EDL (α = r + 1) are composed of evidence and a weight of one that is allocated to all
the training classes. In comparison, the SLUE used the base rates to refine the Dirichlet
distribution parameters (α = r + Ca) to guide the training process. Within the SLUE
method, the base rates is updated after each batch leading to a more flexible and precise
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classification. In addition to the underutilization of base rates within the EDL method,
the sum of all the weights equals the number of training classes. Intuitively, the sum of
all the weights could be a hyperparameter. Consequently, in SLUE, the sum of all the
weights is represented by the prior constant C; the optimum can be explored through
experiments.

Compared with the existing methods, this work makes the following contributions:

1. Taking the base rates explicitly into account, the initial choice is evaluated. A com-
prehensive analysis with experiments is carried out.

2. Exploring and finding the optimum configuration of the hyperparameter C.

4.2.2 Proposed method

Suppose the state space is composed by K training class, i.e., {ω1, · · · , ωK}. We define
the evidence ri, probability pi, and base rates ai for the current batch i, consequently, the
probability pi−1 for past batch i− 1. We feed the model outputs into the ReLU and take
the outputs as ri, meanwhile, pi can be calculated with Eq. (4.2).

The motivation behind updating the base rate is inspired by [Jøs18]. In which, it
claims that the base rates can be dynamically updated as a function of observed evi-
dence. In the beginning, we do not know the class proportion. However, once made a
batch prediction, we can take the previous probability pi−1 to update the base rates ai, i.e.,
pi−1 −→ ai as shown in Fig. 4.1. Then, α = r + Ca are used as the parameters of a Dirich-
let distribution. The uncertainty can be calculated with Eq. (4.4) to determine whether to
accept or reject the current prediction. The SLUE method uses Eq. (4.4) to quantify un-
certainty directly and probability calculated from Eq. (4.2) to make prediction decisions.
The format loss function Eq. 4.5 is adopted.

FIGURE 4.1: The base rate update process. Suppose there are M1 epoches, each epoch contains
M2 batches, and the batch size is bs. The default base rate a1 ∈ Rbs×K is a matrix filled by 1

K .
At each batch i, we use the previous probability pi−1 update the base rate.

4.2.3 Experiment

4.2.3.1 Experiment protocol

We use the standard CNNs with ReLU as the neural network architecture, all experi-
ments are implemented in Pytorch. For the Mnist dataset [LCB10], a standard LeNet
[LBBH98] was trained. Following the suggestion of [LW17], an augmented LeNet ver-
sion that contained 192 filters at each convolutional layer and had 1000 hidden units for
the fully connected layers was trained for Cifar10 [Kri12] and Cifar100 [Kri12] datasets.
The characteristics of the datasets are shown in Table. 4.1. For training, we use the hold-
out strategy, that is to say, 70% of samples are used for training, and 30% of samples used
for testing. The Adam optimizer has been used with default settings for training.
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Name # Used classes # Training samples # Testing samples

Mnist 10 55000 10000

Cifar10 10 50000 10000

Cifar100 10 5000 1000

Lsun 10 - 2000

Texture 10 - 2000

Places365 10 - 2000

Mnist5 5 25000 5000

Cifar5 5 28000 4800

TABLE 4.1: An overview of datasets involved in SLUE.

Apart from the measurements introduced in Section 3.2, we also adopt the following
measurements.

• Extended accuracy is the number of correctly classified In-Domain (ID) samples plus
the rejected wrong classified samples divided by the total number of samples. This
is different from test accuracy, which only takes correctly classified samples into
account; with uncertainty, the rejected wrong classified samples should also be re-
garded as correctly classified samples and be taken into account. A higher value is
better.

• Entropy is used to evaluate the prediction uncertainty as described in [LW17]. The
increase in prediction uncertainty leads to an increase in entropy. Consequently,
% max entropy which means the ratio of prediction entropy to the maximum pre-
diction entropy is used for uncertainty estimation, for OOD samples, a higher %
max entropy value is better. And the Cumulative Distribution Function (CDF) is
also adopted, which describes the entropy distribution for each sample. For OOD
samples, a curve closer to the right bottom corner is desired.

4.2.3.2 Initial stage choice

This section describes and compares several strategies to choose the prior constant C and
initial base rates. The first five classes of the Mnist and Cifar10 datasets were extracted
to generate Mnist5 and Cifar5 datasets. The model with the SLUE method was trained
based on these two datasets; then it was tested with Mnist and Cifar10 testing datasets
that contained all ten classes. During this process, the first five class samples played the
role of ID samples, while the last five class samples acted as OOD samples.

To select the optimum prior constant C, we examined various settings from zero to 100
at an interval of five (the number of training classes). As we can see from Fig. 4.2, the %
max entropy kept increasing; meanwhile, the extended accuracy reached an optimum. To
balance these two criteria and take the integer multiples value of the number of training
classes, a value four times the number of training classes was used in the experiments.
The optimal extended accuracy and intersection are indicated by two dashed black lines,
and the chosen prior constant C is indicated by dash-dot blue lines.

Events that can be repeated many times are typically frequentist in nature, mean-
ing that base rates for such events typically can be derived from statistical observations
[Jøs18]. Thus, for the initial base rates, there are four candidates:

1. Use the uniform base rates (hereafter called uniform prior), i.e., ( 1
K , · · · , 1

K ).
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FIGURE 4.2: Estimation results based on different prior constant C values for Mnist5 (left) and
Cifar5 (right) datasets.

Strategy Extended accuracy % Max Entropy

Mnist5 / Cifar5 Mnist5 / Cifar5

Uniform Prior 0.733 / 0.645 0.448 / 0.608

Frequency Prior 0.733 / 0.645 0.448 / 0.608

Highest Frequency Prior 0.733 / 0.645 0.446 / 0.607

Lowest Frequency Prior 0.737 / 0.645 0.447 / 0.607

TABLE 4.2: The estimation results based on different base rates initial strategies.

2. Use each training class frequency as the initial base rates (hereafter called frequency

prior), i.e., (
∑(xi ,yi)∈Dtrain 1(yi=ω1)

N , · · · ,
∑(xi ,yi)∈Dtrain 1(yi=ωK)

N ).

3. Assign the whole base rates to the training class that has the highest frequency
(hereafter called highest frequency prior), i.e., (1, 0, · · · , 0), where the first class has
the highest frequency.

4. Assign the whole base rates to the training class that has the lowest frequency (here-
after called lowest frequency prior), i.e., (1, 0, · · · , 0), where the first class has the
lowest frequency.

Prior constant C is set to equal four times the number of training classes, then each
base rate initial strategy is verified in turn. The training and testing period operations are
the same as those for choosing optimum prior constant C. As can be seen from Table 4.2,
there was not an obvious difference between the four strategies; because the initial base
rate is just initialization, the final classification is determined by all the base rates in every
iteration step, and the initial base rate does not dominate. As a result, the easiest achieved
strategy (uniform prior) was chosen for determining the initial base rates.

4.2.3.3 Evolution of base rate

Since the base rate is updated after each batch, we show the evolution of the base rate.
Based on the Cifar10 dataset, four different NNs are trained. Each training process con-
tains 10 epochs and each epoch has many batches. The initial base rate is set to the
uniform prior, and the average of the base rate of each class of the last batch is calculated
as shown in Fig. 4.3. As shown in the Fig. 4.4, from the results obtained, some of the base
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Method Mnist Cifar5

CNN 0.994 0.764

EDL 0.993 0.843

SLUE 0.997 0.843

TABLE 4.3: The testing accuracies for Mnist and Cifar5 datasets in SLUE.

rates fluctuate around a central mean, while others maintain an upward or downward
trend. It can be seen that the base rate plays a role in guiding the training toward the
desired direction.

FIGURE 4.3: The process of obtaining base rate evolution. Suppose there are M1 epoches, each
epoch contains M2 batches, the batch size is bs, and the base rate at end of ith epoch pi

M2
∈

Rbs×K. Then, calculating the average probability in the batch dimension for each class getting
pi′

M2
∈ R1×K. Finally, stacking all the average probability vertically, we can get the base rate

evolution matrix p ∈ RM1×K.

4.2.3.4 Synthetic dataset

First and foremost, SLUE accuracy performance was evaluated. Following the suggestion
of [LW17], the Cifar10 dataset was reduced by selecting the first five classes; it is referred
to as Cifar5. Since with CNNs method the model cannot calculate uncertainty for OOD
samples, to be fair, classical test accuracy was adopted instead of extended accuracy.
Table 4.3 demonstrates the main characteristics for comparing the SLUE method and the
existing methods. The SLUE method achieved a match and better performance in test
accuracy. Hence, the uncertainty estimation extensions of SLUE do not decline the model
performance on ID sample classification.

There is one more point that should be touched upon, the model uncertainty perfor-
mance. The models were trained with the Cifar10 and Cifar100 datasets separately. The
trained models were tested with the OOD datasets (e.g., Texture, Places365, Lsun, Ci-
far10, and Cifar100 datasets). To be homogeneous between testing datasets and training
datasets, for Texture, Places365, and Cifar100 datasets, the first ten classes were extracted
and then used for the experiments. The results of the prediction entropy CDF on the
OOD datasets are shown in Fig. 4.5. Since the predictions for these samples are all wrong
since it is OOD, predictions with maximum entropy are expected. A high start entropy
value will be observed, and after this beginning point, there will be a dramatic increase in
probability. Regarding the figure, the curves closer to the bottom right corner of the plot
are wanted, which demonstrates maximum entropy in all predictions [LW17]. What is
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(A) The VGG model. (B) The ResNet model.

(C) The WideResNet model. (D) The MobileNet model.

FIGURE 4.4: The evolution of the base rate based on four models trained by the Cifar10 dataset.

Dtrain Method % max entropy ↑

Cifar10
EDL 0.78

SLUE 0.93

Cifar100
EDL 0.76

SLUE 0.92

TABLE 4.4: The comparison between different estimation methods. ↑ indicates larger values
are better, and bold numbers are superior results. All values are percentages and are averaged

over the four OOD datasets described in section 4.2.3.4.

striking about the curves in these figures is that the SLUE method associates much more
uncertainty with its predictions than other methods. Compared to the decentralized en-
tropy distribution on the EDL method, the SLUE method is more concentrated. This
attribution makes it easier to distinguish OOD samples. As Table. 4.4 demonstrated that
SLUE reached better uncertainty assessment performance 15% improvement in terms of
% max entropy. It is apparent that the uncertainty estimates of the SLUE method are
better than the EDL method.

4.2.3.5 Adversarial dataset

Last but not least, the different methods were also evaluated against adversarial sam-
ples [SKK18, LW17, MG19]. Using the fast gradient sign method, adversarial Mnist and
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(A) Texture dataset.

(B) Places365 dataset.

(C) Lsun dataset.

(D) Cifar100 dataset (left) and Cifar10 dataset (right).

FIGURE 4.5: The performance of SLUE against out-of-domain datasets. Empirical CDF for
the entropy of the predictive distributions on the OOD datasets based on a model trained by

Cifar10 (left column) and Cifar100 (right column) datasets.
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(A) Mnist dataset.

(B) Cifar10 dataset.

FIGURE 4.6: extended accuracy and % max entropy as a function of the adversarial perturbation
ϵ.

Cifar10 datasets are generated. The feature is that the bigger perturbation ϵ is, the gener-
ated datasets were closer to the OOD datasets. Because it becomes harder to make correct
predictions, bigger % max entropy would be observed. Fig. 4.6 presents an overview of
the performance of extended accuracy and % max entropy for the SLUE method against
adversarial datasets. These figures are quite revealing in several ways. First, the figure
indicates that the SLUE method has the highest extended accuracy for the adversarial
datasets as shown in the left column of the figure. Second, with the comparable % max
entropy on all of its predictions as indicated by the right column of the figure, the SLUE
method can be used for the identification of OOD samples. The SLUE method repre-
sents a good balance between prediction uncertainty and extended accuracy criteria. It
associates high uncertainty with the wrong predictions, which can be used to reject OOD
samples, improving model robustness.

4.3 Conclusions

The aim of the present research was to extend the existing EDL method by taking base
rates into account. It verified the SLUE method uncertainty performance through OOD
and adversarial datasets. It introduced how to select the initial parameters and use ex-
tended accuracy as one of the measurement. Meanwhile, we verified the performance of
the SLUE method against OOD and adversarial datasets. From the obtained results, we
can see that guided by base rates, the SLUE method works better not only in terms of
extended accuracy but also on the uncertainty estimation performance. As it can reject
OOD samples, this approach will prove useful in improving model robustness.
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Part II

Partial classification
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Chapter 5

A survey of partial classification

Partial classification is fulfilled by classifying confusing samples into subsets, thus mak-
ing more cautious decisions and avoiding misclassification as well as potential risks. This
chapter summarizes common partial classification methods, which we classify into two
main categories that can be used directly for pre-trained models and those that require
fine-tuned processes. In addition, we introduce the commonly used datasets and mea-
surements.

5.1 Related works

Partial, indeterminate or set-valued classification, which is able to predict more than one
class in case of high uncertainty. At the first glance partial classification seems to be
linked to multi-label classification [DWCH12, Vov12]. The confusion comes from the
fact that both methods produce a class subset as the prediction. However, the crucial
dissimilarity comes in that an input sample is labeled by a subset of classes for multi-label
classification, whereas for partial classification, only a single class. The goal of the partial
classification is to build a classifier fθ(x); which has two desired properties: the predicted
set cardinality | fθ(x) | is not too large and it is trend to make the correctly classification
y ∈ fθ(x). The uncertainty estimation that calculates a value used to reject the confusing
sample or classify the confusing sample into a Out-of-Domain (OOD) class is also a kind
of partial classification. In this section, we will only present the unique parts different
from the uncertainty estimation. The prevalent partial classification methods are split
into two categories, i.e., used for pre-trained and used for the fine-tuned model.

5.1.1 Methods based on the pre-trained model

For dealing with confusing samples through partial classification, a straightforward way
is to always predict classes subsets with a fixed cardinality, e.g., a class subset that con-
tains the top five most proper classes [RDS+15]. The top-k strategy can also be used
to construct the loss function to train the classifiers. Lapin et al [LHS16] proposed a
new surrogate hinge loss as well as a modified cross-entropy loss. Berrada et al [BZK18]
modified the loss proposed by [LHS15] in order to provide a smooth loss function bet-
ter adapted for Neural Network (NN)s and showed that the resulting method achieves
state-of-the-art performance on classical image datasets. [LHS16] proposed an novel top-
k loss function as modification of the softmax and the multiclass Support Vector Machine
(SVM) loss and provide efficient optimization schemes for them. However, there is no
reason to predict exactly five or any other a prior fixed number of classes all the time.
Consequently, [LJS21] proposed an alternative sensible strategy is to use an adaptive ap-
proach in which the number of classes returned varies, but must average to a particular
value over all the samples.
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Another plain approach is performing thresholding on class probability [MWD+21].
One can return classes whose probability exceeds a fixed threshold or can define a thresh-
old on the cumulative probability of the class subset. In the cumulative probability case,
one first sorts the classes in decreasing order of class probabilities. For a threshold, one
then returns the top-k classes. This strategy can also be used to build loss function, for
example, the conformal predictor.

[MD21] proposed a new partial classifier combines the Dempster-Shafer Theory
(DST) and the Convolutional Neural Network (CNN). It introduced a method to define
the utilities of predicted sets using Ordered Weighted Average (OWA) operators [Yag92]
based on the utility of precise classification and a control parameter. With the extended
utility matrix, a generalized maximum expected utility principle is used to make the par-
tial classification. The predicted set amount increases exponentially, as the increase of
the class number. In order to alleviate the computation burden, [TXD21] proposed an
approach for selecting the interesting predicted set. In [LHZD20], a decision-level com-
bination method is proposed for the multisource domain adaptation based on Dempster-
Shafer Theory (DST). The sample is assigned to a singleton class if its neighborhoods can
be correctly classified. Otherwise, it is committed to the subset of several possible classes.

5.1.2 Methods based on the fine-tuned model

Inspired by the reject option, an approach integrates costs of indeterminacy in the
decision-making [BW08, DCDB09]. One drawback of this approach is that it does not
differentiate between rejection due to ambiguity and rejection due to lack of information.
[YDM14, YDM17, DY14] introduced a nested dichotomies strategy, which offers com-
putational advantages in both the training and testing processes. Nested dichotomies
are binary decomposition methods that transform a multiclass problem into a set of two-
class problems easier to solve than the original one. They are so-called meta-classifiers, as
each two-class problem can be solved by any classifier. In [DKS19], the authors proposed
a semi-supervised procedure based on empirical risk minimization. They derived rates
of convergence under smoothness conditions on the conditional probabilities. Authors in
[DKS19] also adopt the idea to use unlabeled data to build the partial classifier, where the
authors proposed a two-step empirical risk minimization procedure and derived rates of
convergence. Later, [RV09] developed a minimax analysis of this framework and derived
optimal rates of convergence for a semi-supervised approach based on plug-in under
smoothness conditions.

Given an input sample (x, y), and a confidence level or threshold δ the goal in confor-
mal prediction theory is to provide a set fθ(x) = {yi, · · · , yj}, which satisfies

p (y /∈ fθ(x)) ≤ δ. (5.1)

The conformal prediction theory could be viewed as a way to build partial classifiers.
The disadvantages include high computational complexity and randomized nature of
the constructed classifiers. For a broad review of conformal prediction theory with main
theoretical and practical advances could refer to [VGS05, VNF+17].

In practice, reliability is also needed when representing uncertainty. This is one
of the core ideas of the imprecise probability framework [Wal91], where uncertainty is
modeled by a set of possible probability distributions instead of a single one. This set,
also called credal set [Kyb84], represents the uncertainty about the true distribution that
cannot be perfectly identified. Consider a standard probabilistic classifier could yield
precise estimation such as {p(ω1) = 0.1, p(ω2) = 0.3, p(ω3) = 0.6}. In the impre-
cise probability framework, a classifier could return interval-valued estimation such as
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{p(ω1) = [0, 0.2], p(ω2) = [0.3, 0.4], p(ω3) = [0.4, 0.6]}. The probabilities are interval-
valued, the width of which represents the uncertainty about the estimations. A large
interval means that we have poor or inconsistent information about the class.

5.2 Measurements

Different from the various measurements used for uncertainty estimation, the measure-
ment of partial classification are surrounded by two terms, i.e., the accuracy and the
informativeness. The accuracy is literally what it means, the informativeness means the
predicted set cardinality and the informative prediction should not contain too many can-
didates. The classification problem is about assigning a prediction ŷ to a sample x issued
from the input feature space. When the prediction ŷ is a single label of the output space
Ω, it is what we call precise prediction. For accuracy, we can evaluate the performance of
the precise prediction, as an example, by the "0/1" accuracy. As shown in Table 5.1, take
the same example that was used to explain the DST.

accŷ(y)
Ground-truth label
y = r y = g y = b

ŷ = r 1 0 0
ŷ = g 0 1 0
ŷ = b 0 0 1

TABLE 5.1: The accuracy matrix is defined according to the prediction and the ground-truth
label. The accuracy equals 1 if ŷ = y; 0 otherwise. "r" represents "red", "g" represents "green",

and "b" represents "blue".

The classical method to evaluate classifier performance is the expected accuracy

E
(
accŷ

)
=

1
N ∑

x∈X
accŷ( fθ(x)). (5.2)

5.2.1 The informativeness measurements

As mentioned above, partial classification is trying to find a trade-off between infor-
mativeness and accuracy. Consequently, the predicted set averaged cardinality (AC) is
adopted to measure the predictive informativeness.

AC =
1
N ∑

x∈X
| fθ(x) | . (5.3)

5.2.2 The accuracy measurements

When dealing with partial classification, since the prediction is a subset, "0/1" accuracy
is improper. There is a need to derive accuracy function accŷ for partial classification as
shown in Table 5.2. The existing methods can be classified into the following three main
branches, i.e., discounted accuracy, utility discounted accuracy, and Fβ measure.

A common proposal is the so-called discounted accuracy. As shown in Table 5.3, such
that accŷ(y) = 1/|ŷ| if y ∈ ŷ; accŷ(y) = 0 otherwise. Once get the discounted accuracy
for each sample, we can calculate averaged discounted accuracy (ADA) to measure the
prediction performance.
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accŷ(y)
Ground-truth label

y = r y = g y = b

ŷ = r 1 0 0
ŷ = g 0 1 0
ŷ = b 0 0 1
ŷ = {r, g} acc{r,g}(r) acc{r,g}(g) acc{r,g}(b)
ŷ = {g, b} acc{g,b}(r) acc{g,b}(g) acc{g,b}(b)
ŷ = {r, b} acc{r,b}(r) acc{r,b}(g) acc{r,b}(b)
ŷ = {r, g, b} acc{r,g,b}(r) acc{r,g,b}(g) acc{r,g,b}(b)

TABLE 5.2: The accuracy matrix for the partial classification.

accŷ(y) =
1
| ŷ |1(y ∈ ŷ), ADA =

1
N ∑

x∈X
accŷ( fθ(x)). (5.4)

accŷ(y)
Ground-truth label
y = r y = g y = b

ŷ = r 1 0 0
ŷ = g 0 1 0
ŷ = b 0 0 1
ŷ = {r, g} 1

2
1
2 0

ŷ = {g, b} 0 1
2

1
2

ŷ = {r, b} 1
2 0 1

2
ŷ = {r, g, b} 1

3
1
3

1
3

TABLE 5.3: The accuracy matrix is defined according to the discount accuracy for partial clas-
sification.

Rather than adopting the discounted accuracy, Zaffalon et al. [ZCM12] propose to
keep accŷ(y) = 0 if y /∈ ŷ, but to take accŷ(y) = g( 1

|ŷ| ) if y ∈ ŷ where g is a utility function

on [0, 1] such that g( 1
|ŷ| ) ≥

1
|ŷ| , g(1) = 1 and g(0) = 0. They interpret g as a concave

function modeling the risk-aversion, i.e., the utility or the cautiousness-seeking attitude
of the decision-maker. In particular, they propose specific quadratic forms of g as:

g(x) = −0.6
(

1
| ŷ |

)2

+ 1.6
1
| ŷ | . (5.5)

This specific utility keeps some appealing properties of the discounted accuracy.
When the correct class is not in ŷ the accuracy should stay at 0, when the prediction
is both precise and accurate then the accuracy should be 1. Moreover, this utility function
can express the risk-aversion by giving a smaller cost or higher accuracy to imprecise but
correct predictions compared to the discounted accuracy. As shown in Table 5.4.

Fβ measure, which computes the harmonic mean weighted by the coefficient β be-
tween precision P and recall R, can be use to fulfill accŷ(y), as shown in Table 5.5.

Fβ =

(
1 + β2) PR
β2P + R

, P =
1ŷ(y)
|ŷ| , R = 1ŷ(y). (5.6)
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accŷ(y)
Ground-truth label
y = r y = g y = b

ŷ = r 1 0 0
ŷ = g 0 1 0
ŷ = b 0 0 1
ŷ = {r, g} 0.65 0.65 0
ŷ = {g, b} 0 0.65 0.65
ŷ = {r, b} 0.65 0 0.65
ŷ = {r, g, b} 0.46 0.46 0.46

TABLE 5.4: The accuracy matrix is defined according to the utility discount accuracy for the
partial classification.

accŷ(y)
Ground-truth label
y = r y = g y = b

ŷ = r 1 0 0
ŷ = g 0 1 0
ŷ = b 0 0 1
ŷ = {r, g} 2

3
2
3 0

ŷ = {g, b} 0 2
3

2
3

ŷ = {r, b} 2
3 0 2

3
ŷ = {r, g, b} 1

2
1
2

1
2

TABLE 5.5: The accuracy matrix is defined according to the Fβ function for the partial classifi-
cation.

5.2.3 The hybrid

The hybrid approach takes into account both accuracy and predicted set cardinality. This
framework is proposed and analyzed in the literature [Ha97]. Its goal is to find the opti-
mal error-reject trade-off using a specific loss structure defined as follows:

ℓŷ(y) = ℓ1(y, ŷ) + ℓ2(| ŷ | −1), (5.7)

where ℓ1 modelling the loss of missing the true class y. ℓ2 representing the cost of being
imprecise, with the condition that ℓ2 < 1

2ℓ1
for all y. The obtained cost matrix is given by

Table 5.6.

cŷ(y)
Ground-truth label

y = r y = g y = b

ŷ = r 0 ℓ1 ℓ1
ŷ = g ℓ1 0 ℓ1
ŷ = b ℓ1 ℓ1 0
ŷ = {r, g} ℓ2 ℓ2 ℓ1 + ℓ2
ŷ = {g, b} ℓ2 ℓ1 + ℓ2 ℓ2
ŷ = {r, b} ℓ1 + ℓ2 ℓ2 ℓ2
ŷ = {r, g, b} 2ℓ2 2ℓ2 2ℓ2

TABLE 5.6: The accuracy matrix is defined according to the class-selective rejection rule for the
partial classification.
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5.3 Datasets and baselines

As we have done in the uncertainty estimation part, we summarize the often used
datasets and baseline from different partial classification methods. The commonly used
datasets are synthetic, e.g, datasets generated based on the Gaussian distribution and
UCI dataset. The most prevalent measurements used by various methods are the util-
ity discounted accuracy and predicted set cardinality. For the baseline, different from
the uniform and widespread admit methods of the uncertainty estimation, different par-
tial classification methods have their preferences. In this thesis, we take PCBF [MD21]
method as the baseline.

5.4 Conclusions

The related works presented in this chapter include two categories that can be directly ap-
plied to pre-trained models and methods that need to accompany the new loss function
and new model architecture. The former can be directly applied to pre-trained models,
but also requires a specific loss function to train the model. The latter needs to construct a
new loss function or even a change to the original model architecture. In addition, some
commonly used measurements are introduced, e.g., average cardinality and average dis-
counted accuracy.
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Chapter 6

Novelty partial classification
approaches

As mentioned, both uncertainty estimation and partial classification should be fast and
packageable as an auxiliary module that can be integrated on the top of pre-trained mod-
els without retraining or major architecture changes. In this chapter, we introduced two
novelty methods that are fulfilled only based on the model output. The kernel idea is to
assign belief to nested subsets. And choose the subset with the maximum belief as the
prediction.

6.1 The proposed approach based on the model output

6.1.1 Introduction

The precise or certainty classification [LLY+16, WJC+20] is a well-known issue in which
a sample is classified into one and only one of the training classes. Unfortunately, such
a strict classification sometimes results in misclassification when the input sample does
not contain sufficient evidence to identify a certain class. The partial classification [Ha97,
MD21, MWD+21] is one of the more practical ways to solve this problem. It is defined as
the assignment of a sample into a class subset. For example, let us consider a class set Ω =
{ω1, ω2, ω3}. Here, we cannot manage to reliably classify a sample into a single class,
but it is almost sure that it does not belong to ω1. Consequently, it is more reasonable
to assign it to the subset {ω2, ω3}. In practice, high ambiguity emerges in numerous
applications, and large-scale datasets contain a fair amount of confusing samples, these
are the bedrock of the usage of partial classification. For instance, the goal of road surfaces
classification [ZYZZ16] is to produce a prediction with almost null errors which can be
expected from partial classification.

A considerable amount of literature has been published on partial classification and
has always led to different classification strategies. On the one hand, researchers at-
tempted to predict a subset with prior fixed cardinality [RDS+15] or with a rejection op-
tion [KSW15, LPB17, LWOL20]. They can be seen as a special case of partial classification
by classifying the sample into one specific class subset. On the other hand, a number
of authors attempted to modify the loss function [DCDB09, Ha97, MWD+21] or build a
new classifier [SLW19, VGS05, Zaf02] to provide beliefs for predicted sets. Usually, such
algorithms are time-consuming. To this end, it is essential to reduce the computation and
time complexity by efficiently and sufficiently leveraging the information provided by
the pre-trained neural network.

We presented a new Partial Classification method based on pre-trained CNN-based
Model Outputs (PCMO) [XAC21]. Different from the existing methods, the PCMO
method simply and efficiently fulfilled partial classification only based on pre-trained
CNN-based model outputs, and provided beliefs to predicted sets for further prediction.
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As shown in Fig. 6.1, at first, the CNN-based model extracts features from the input layer
through the combination of the feature extraction process and the fully connected layer
between the last hidden layer and the output layer. Second, the received features are con-
verted into beliefs under the Dempster-Shafer theory (DST) [Sha76] through the output
to possibility and the possibility to belief processes. Finally, the PCMO method performs
partial classification based on the produced beliefs by choosing the maximum belief and
generating the corresponding class subset as the prediction.

FIGURE 6.1: The framework of the PCMO method. The feature extraction process is demon-
strated simply, it can be any kind of CNN-based architecture, e.g., fully connected layer,
LeNet [LBBH98], GoogLeNet [SLJ+15], or ResNet [HZRS16]. The detailed output to possi-

bility, possibility to belief, and partial classification processes are presented in Section 6.2.2.

The contributions can be summarized as follows:

• The most striking achievement is that the proposed method is fulfilled only based
on model outputs that can be applied to any pre-trained CNN-based model without
any demand to retrain the model or conduct any further modifications.

• By considering good features of log function and analyzing the regular pattern of
model outputs, a novel and reasonable transformation from model outputs to pos-
sibility distribution is proposed.

6.1.2 The pattern of the CNN-based model outputs

The convolutional neural network (CNN) [LBBH98] is a machine learning method that
uses multiple layers to progressively extract features from raw data as sample represen-
tation. Define a training dataset Dtrain = {xn, yn}N

n=1 has K classes, where xn ∈ Rd,
and yn ∈ {1, . . . , i, . . . , K}. A CNN-based model fθ(x), with the entire model pa-
rameter θ. From the last hidden layer δn = {δ1, . . . , δi, . . . , δh} to the output layer
on = {o1, . . . , oi, . . . , oK}, the weight W ∈ Rh×K defines a transformation, i.e., on = Wδn.
In general, the empirical loss Lθ over Dtrain has the following form:

Lθ(Dtrain) =
N

∑
n=1

ℓ( fθ(x), yn), (6.1)

where ℓ(·) is the cross-entropy loss.
The CNN-based model mentioned in this thesis respects two usual and reasonable

assumptions. The model loss Eq. (6.1) converges to zero when iteration t approaches
infinity, i.e., limt→∞ Lθt = 0, and the model’s last hidden layer and the output layer are
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fully connected. Based on the two assumptions, [ZL20] shows, both theoretically and
empirically, that the last weight layer W of a neural network converges to a Support
Vector Machine (SVM) trained on the last hidden layer output with the commonly used
cross-entropy loss.

Since W represents a hyperplane, the farther the input sample is from the hyperplane,
the greater the corresponding class output will be. As illustrated in Fig. 6.2, the model
output contours of the CNN-based model are radiated, becoming larger as the distance
from the hyperplane increases.

6.1.3 Proposed Method

As it can be seen from Section 6.1.2, a sample that is far from the training dataset occu-
pies high outputs for several classes leading to high probabilities for the corresponding
classes, resulting in the improper execution of precise classification. Consider, from an-
other angle, the high outputs for multiple classes can be regarded as evidence to classify
a sample into a class subset. From this point, we proposed to calculate beliefs only based
on pre-trained CNN-based model outputs to fulfill partial classification. Moreover, we
chose the possibility as the bridge between model outputs and beliefs, then proposed the
following transformations.

Sorting on by descending order to get o′n = {o′1 ≥ · · · ≥ o′i ≥ · · · ≥ o′K}, where o′i is
the ith largest element in on. Then, a prerequisite step is to prepare a temporary vector
vn = {v1, . . . , vi, . . . , vK} based on Eq. (6.2) that coordinates with Eq. (6.3) to calculate the
target possibility distribution.

vi =
1
|Ai|

i

∑
k=1

log2(1 + max(0, o′k)), (6.2)

where 1
|Ai | is used to penalize the ambiguity caused by classifying xn to subset Ai. If we

consider a reasonable assumption that the desired possibility transformation should keep
the original pattern of outputs, escalating the difference for small values while narrowing
the difference for bigger values. The log2 function should be chosen, which tends to
be flat after the initial rapid growth. At the same time, in order to avoid the negative
possibility, use max(0, o′k) to clamp the outputs and move the log2 function to the left by
one unit.

After min-max normalization by Eq. (6.3), we can get the possibility distribution
πn = {π1, . . . , πi, . . . , πK}. As claimed in [DP82] that any possibility distribution is a
plausibility function corresponding to a consonant m. Our possibility distribution πn
can be transformed to belief function m according to Eq. (6.4), the detailed calculation is
presented in Fig. 6.3. In our case, πK equals zero, which implies that m(Ω) equals zeros.

πn =
vn −min(vn)

max(vn)−min(vn)
. (6.3)

m(Ai) =

{
πj − πj+1 if Ai = {ω1, · · · , ωj} for some j ∈ {1, · · · , K− 1},
0 otherwise.

(6.4)

The PCMO classification algorithm is detailed in Algorithm 1. Based on the beliefs
calculated through Eqs. (6.2), (6.3), and (6.4), we chose the subset with the maximum
belief as the prediction. Suppose, the maximum belief is m(Ai), the PCMO method will
generate the predicted set {ω1, . . . , ωi} corresponding to the top i maximum outputs. The
Table 6.1 shows a comparison between the belief calculated with log function (PCMO)
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(A) MNIST dataset.

(B) Cifar10 dataset.

(C) Cifar100 dataset.

(D) Lsun dataset.

(E) Svhn dataset.

FIGURE 6.2: The model output contours on MNIST [LCB10], Cifar10 [Kri12], Cifar100 [Kri12],
Lsun [YZS+15], and Svhn [NWC+11] datasets. Different prevalent CNN-based models are
verified. From left to right are LeNet [LBBH98], GoogLeNet [SLJ+15], ResNet [HZRS16], and
MobileNet [HZC+17]. For visualization purposes, the h that appears in the last hidden layer is
set as two. Meanwhile, according to the minimum and maximum column values of δ ∈ RN×2

a 2D mesh can be generated. Feed this mesh into the last hidden layer to get the outputs which
can be regarded as contours. As we can see, the pattern of the CNN-based model is that a
sample far from the training dataset can bring high outputs and lead to high probabilities for
several classes. Under this context, partial classification rather than precise classification should

be used.
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FIGURE 6.3: The belief calculation process in PCMO.

Algorithm 1 Classification process for a sample xn

Require:
Model outputs on ∈ RK

Ensure:
Predicted set predSet

1: Sorting on in descending order to get the sorted index index and sorted outputs o′n
2: Calculating vector vn base on o′n according to Eq. (6.2)
3: Calculating possibility distribution πn base on vn according to Eq. (6.3)
4: Calculating belief mn base on πn according to Eq. (6.4)
5: Obtaining the maximum belief index idx = argmax(mn) for the sample xn
6: Generating the predicted set predSet = list(index[1 : idx]), which contains the candi-

date classes
7: return predSet

and belief calculated without log function. Noteworthy, the kernel ideal of partial clas-
sification is to assign a value to each predicted subset. This value can be called belief or
possibility. If we focus on the possibility, then the possibility of each predicted subset has
to be constructed based on the possibility of each state (class). This is theoretically possi-
ble to execute partial decisions in the possibilistic framework, but further verification is
needed.

6.1.4 Experiments

6.1.4.1 Experiment protocol

There are four prevalent datasets involved, i.e., modified national institute of stan-
dards and technology (MNIST) [LCB10], canadian institute for advanced research 10 (CI-
FAR10) [Kri12], street view house number (SVHN) [NWC+11], and large-scale scene un-
derstanding challenge (LSUN) [YZS+15]. The characteristics of the datasets are shown in
Table 6.8. Four classical CNN-based models, i.e., LeNet [LBBH98], GoogLeNet [SLJ+15],
residential energy services network (ResNet) [HZRS16], and MobileNet [HZC+17], are
adopted to prove the efficiency of the PCMO method. We used the cross-entropy loss
as the loss function and the rectified linear unit (ReLU) as the activation function. For
training, we use the holdout strategy, that is to say, 70% of samples are used for training,
and 30% of samples used for testing. The Adam optimizer has been used with default
settings for training. Since the proposed method can be used for any pre-trained neural
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Id Type
Output Belief with log (PCMO) Belief without log

(ω1, ω2, ω3, ω4, ω5) (m(A1), m(A2), m(A3), m(A4))

1 ID (10.0, 1.0, 1.0, 1.0, 1.0) (0.62, 0.20, 0.10, 0.06) (1.0, 0.0, 0.0, 0.0)
2 OOD (10.0, 10.0, 10.0, 10.0, 10.0) (0.0, 0.0, 0.0, 1.0) (nan, nan, nan, nan)
3 IM (10.0, 10.0, 10.0, 10.0, 1.0) (0.0, 0.0, 0.0, 1.0) (0.0, 0.0, 0.0, 1.0)
4 IM (10.0, 10.0, 10.0, 1.0, 1.0) (0.0, 0.0, 0.62, 0.37) (0.0, 0.0, 1.0, 0.0)
5 IM (10.0, 10.0, 1.0, 1.0, 1.0) (0.0, 0.55, 0.27, 0.16) (0.0, 1.0, 0.0, 0.0)
6 IM (10.0, 9.0, 8.0, 7.0, 6.0) (0.22, 0.23, 0.25, 0.27) (0.25, 0.25, 0.25, 0.25)
7 IM (10.0, 9.0, 8.0, 6.0, 6.0) (0.19, 0.21, 0.36, 0.22) (0.25, 0.25, 0.5, 0.0)
8 IM (10.0, 10.0, 10.0, 9.5, 9.5) (0.0, 0.0, 0.62, 0.37) (0.0, 0.0, 1.0, 0.0)
9 IM (5.0, 4.0, 3.0, 2.0, 1.0) (0.19, 0.22, 0.26, 0.32) (0.25, 0.25, 0.25, 0.25)
10 IM (5.0, 5.0, 4.0, 4.0, 4.0) (0.0, 0.55, 0.27, 0.16) (0.0, 1.0, 0.0, 0.0)
11 IM (3.0, 2.0, 2.0, 1.0, 1.0) (0.36, 0.12, 0.31, 0.19) (0.5, 0.0, 0.5, 0.0)

TABLE 6.1: An example to show the role played by the log function in PCMO. Suppose the
training dataset contains five classes, i.e., Ω = (ω1, ω2, ω3, ω4, ω5), and 11 synthetic model out-
puts. Different beliefs are calculated according to whether use the log function. The reason for
using the log function is to take advantage of its growth trend, which is sharp at the beginning
then smooth. Consequently, the PCMO can map the larger output values to be smaller, thus
maintaining the power of large values while keeping the weight of small output values. As
mentioned above, the PCMO chooses the subset with the maximum belief as the prediction,
shown in bold in the table. The first thing can be seen is that the PCMO is able to make pre-
dictions correctly. For obtained beliefs without using the log function, when all the outputs are
the same, although it cannot happen in practice, it will make the divisor equal to zero lead-
ing to nan. In addition, we can summarize another two points. First, when the log function
is not used, the belief will be completely assigned to a certain set, and completely exclude the
possibility of other sets to be predicted, such as samples 3, 4, 5, 8, and 10. Second, when the
difference between the output values is the same, the belief is assigned equally without using
the log function. And, the effect of the output range is not taken into account, for example,
sample 6 belongs to [1, 5], and sample 9 belongs to [6, 10] are assigned with the same belief

(0.25, 0.25, 0.25, 0.25).
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network, we compare the PCMO method with the same type of method. Consequently,
we chose energy score (based on pre-trained model outputs) [LWOL20], dropout score
(based on several executions of the pre-trained model on the testing dataset) [KSW15],
and ensemble score (based on executions of several pre-trained models on the testing
dataset) [LPB17]. For criteria, we adopt ADA and AC as introduced in Section 5.2.

Name # Used class # Training samples # Testing samples

MNIST 10 55000 10000
CIFAR10 10 50000 10000
SVHN 10 4000 2000
LSUN 10 2400 2000

TABLE 6.2: An overview of datasets involved in PCMO.

6.1.4.2 Evaluation of the PCMO method

The PCMO method performs partial classification by choosing the predicted set that oc-
cupies the maximum belief. Naturally, the bigger cardinality of the predicted set indicates
a more confusing input sample. Thus, in order to verify the efficiency of partial classifi-
cation and the capacity of reducing the classification risk under the PCMO method. We
rejected the most confusing samples according to different rejection rates [NZH09].

On the one hand, we executed the PCMO method for different CNN-based models
when rejection rates change from 0.0 to 1.0. Fig. 6.4 is quite revealing in two ways. First,
the ADA increases along with the increase in rejection rates. Second, the selected four
classical CNN-based models achieved good ADA values, except for the slightly worse
initial accuracy of LeNet and MobileNet due to their simple model architecture. This in-
dicates that the PCMO method performed partial classification based on the calculated
beliefs. For AC, which has a high value for Imprecise (IM) samples because PCMO trend
to make caution predictions. Then decrease along with the reduction of IM sample quan-
tity. The performance of the different CNN-based models further proves that partial
classification can be achieved only based on the CNN-based model outputs.

On the other hand, we verified different methods based on different neural networks
and methods, as shown in Fig. 6.5. The ADA of the PCMO method increases significantly
when the rejection rate increases. In contrast, the ADA of the other methods performed
fluctuation or insensitivity when the rejection rate increases. The striking performance is
evidence that the PCMO method makes a well-distributed partial classification while the
others only classified samples to a class subset when the rejection rate is large.

6.1.4.3 Comparison among different normalization strategies

The normalization step is included in the process of transforming the model output into
possibility. Since we need to get the possibility between 0 and 1, in PCMO, we use the
max-min normalization. In this section, we evaluated some other options, such as divid-
ing by the maximum value and softmax as shown in Table 6.3. The performance of the
three normalizations based on different models trained on different datasets is shown in
the Fig. 6.6. From the results, we can see the performance of these three strategies is simi-
lar, the "divide maximum" is a little better. That is because it can assign belief to the entire
set, and classify the confusing samples into the entire set. Based on the comparison, the
normalization strategy based on the knowledge provided by the training dataset can be
imaged.
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(A) The ADA curves.

(B) The AC curves.

FIGURE 6.4: The performance in terms of ADA (the first row) and AC (the second row) values
of different CNN-based models with different rejection rates based on Mnist (left) and Cifar10

(right) datasets.

Max-min:
x−min(x)

max(x)−min(x)
,

Divide maximum:
x

max(x)
,

Softmax:
exp(x)

∑K
i=1 exp(xi)

.

(6.5)

6.1.5 Conclusions

In this section, we present a new partial classification method named PCMO, which is
fulfilled based on pre-trained CNN-based model outputs. From this point of view, the
time complexity of PCMO method is O(1). At first, we theoretically and empirically
proved our hypothesis that a sample far from the training dataset can provide high out-
puts and lead to high probabilities for several classes. Second, we adopted possibility as
the bridge fulfilling the transformation from model outputs to beliefs for the predicted
sets. Then, we verified the PCMO method with different CNN-based models, as well as
different methods based on four datasets. From the production of ADA and AC criteria,
we can tell that the PCMO method performs better than the existing methods, as it can
provide a high belief to a certain sample, as well as a high uncertainty to a confusing
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(A) The curves for LeNet.

(B) The curves for GoogLeNet.

(C) The curves for ResNet.

(D) The curves for MobileNet.

FIGURE 6.5: The performance in terms of ADA values of different methods with different re-
jection rates based on Mnist (left) and Cifar10 datasets, and LeNet (the first row), GoogLeNet

(the second row), ResNet (the third row), and MobileNet (the fourth row).
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(A) The curves for LeNet.

(B) The curves for GoogLeNet.

(C) The curves for ResNet.

(D) The curves for MobileNet.

FIGURE 6.6: The performance in terms of ADA values of different methods with different
rejection rates based on Mnist (left) and Cifar10 (right) datasets, and LeNet (the first row),

GoogLeNet (the second row), ResNet (the third row), and MobileNet (the fourth row).
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Name The value range after normalization m(∅) m(Ω)

Max-min min(·) = 0, max(·) = 1 0 0
Divide maximum 0 ≤ min(·) ≤ 1, max(·) = 1 0 [0, 1]
Softmax 0 ≤ min(·), max(·) ≤ 1 [0, 1] [0, 1]

TABLE 6.3: The belief assignment comparison among different normalization strategies in
PCMO. As can be seen from Eq. 6.4, the beliefs for empty set and entire are calculated based on
the minimum and maximum value, respectively. Taking the max-min normalization strategy
as an example. Since, the maximum value and the minimum value provided by the max-min

normalization are 0 and 1, consequently, the m(∅) and m(Ω) are 0.

sample. The PCMO method proved effective in increasing prediction accuracy and ulti-
mately reducing the classification risk. The partial classification process based on PCMO
involves many steps, such as computing a temporary variable and performing normal-
ization. Those steps might lead to a loss of information. At the same time, the PCMO
method is not able to provide belief for the empty set or the entire set. Therefore, the next
step is to propose a new way to fulfill the transformation from output to possibility and
assign belief to the empty set and the entire set.

6.2 The proposed approach rethink the possibility calculation

6.2.1 Introduction

Although both the partial classification method, and the uncertainty estimation method,
have high potential in high-risk fields such as medical image analysis or autonomous
driving, the following challenges remain.

1. Requirement of the additional Out-of-Domain (OOD) dataset. For instance, energy
score [LWOL20], which needs the additional OOD dataset to train the model. How-
ever, sometimes, the additional OOD dataset is not reachable.

2. Inability of the partial classification to distinguish between sample with "total ig-
norance" about its class membership, which needs to be classified into the empty
set, and sample with "total imprecision" about its class membership, which needs
to be classified into the entire set. The existing methods, tend to produce belief for
the entire set, which will lose effectiveness when the "total ignorance" and the "total
imprecision" appear simultaneously.

3. Lack of interchangeability between the partial classification and the uncertainty es-
timation. In reality, different scenarios have different requirements. For example,
in the task of identifying cats from dogs, it is sufficient to detect the noise sample,
e.g., a car image. Whereas, for tumor image classification, tumor images need to be
partially classified into different class subsets in order to make cautious decisions.
Consequently, there is a demand for the combination of these two kinds of methods
to cope with various scenarios. Although, some methods based on the Dempster-
Shafer Theory (DST) [MD21, TXD21] have the interchangeability, but they did not
mention nor fulfill it yet.

To alleviate these challenges, a novelty partial classification approach named PCBS is
introduced, which combines Bell Shaped Function (BSF) and DST. As shown in Fig. 6.7,
the model first extracts feature, i.e., model output, from the testing sample. Second, the
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FIGURE 6.7: The framework of the PCBS method. The neural network is showed simply, it can
be the classical neural network architecture, e.g., Multilayer Perceptron (MLP), LeNet, or wide
residual network. The detailed BSF calculation, output to possibility, possibility to belief, and
belief to probability processes are presented in Section 6.2.2. After performing different classi-
fication strategies, the samples are classified into different class subsets (or classes) represented

by different color partitions, the detail is showed in Fig. 6.11.

feature is transformed into possibility by feeding them through the BSF calculated from
the training output, the detailed calculation is showed in Algorithm. 2. Then, convert
the possibility into belief as done in literature [Sha76], which can be used for the partial
classification and the uncertainty estimation. Finally, performing partial classification by
naturally choosing the class subset with the maximum belief as the prediction. Addition-
ally, the belief can be transformed into probability under the pignistic transformation [? ].
Performing uncertainty estimation by choosing the class with the maximum probability
as the prediction.

The contributions can be listed as follows:

• Based on the characteristics and the analysis of the existing methods, a new par-
tial classification combined with the BSF and the DST is proposed. This method
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(A) The four-class dataset (the in-
put space).

(B) Features extracted from MLP
trained by the cross-entropy loss

function (the feature space).

(C) Features extracted from MLP
trained by the contrastive-center

loss function (the feature space).

FIGURE 6.8: Four classes of 200 points each are generated from multivariate t distributions with
five degrees of freedom and centered at (0, 0), (0, 4), (4, 0) and (4, 4), respectively. The model
adapted is MLP which contains three hidden layers, one dense layer, and takes rectified linear
unit (ReLU) as the activation function. In order to directly plot the features on a 2D surface for

visualization, we reduce the output number h of the last hidden layer to two.

only requires original training and testing outputs can acquire state-of-the-art per-
formance. The PCBS method saves a lot of effort of the OOD dataset preparation
and makes the model more comfortable to apply, which makes challenge (1) less
challenging.

• Another impressive achievement is that our method, in the view of partial classi-
fication, can calculate belief to class subsets including the empty set and the entire
set, which offers challenge (2) a feasible way.

• The PCBS method is a combination of the partial classification and uncertainty es-
timation, it can be switched simply from the partial classification to the uncertainty
estimation under different scenarios, and this can address the challenge (3).

• The PCBS method can be utilized under the pre-trained model directly and receive
desirable performances. We also present a fine-tuned strategy by resorting to the
contrastive-center loss function, which aims to produce more distinguishable fea-
tures for different samples leading to better classification performance.

6.2.2 Proposed Method

In order to illustrate the proposed method, consider a synthetic four-class dataset rep-
resented in Fig. 6.8a. Let us start with an exploration of the model output, i.e., learned
feature. Since the output is four-dimensional and cannot be plotted directly on a two-
dimensional plane, we set the output of the last hidden layer to two, using it as an ap-
proximation to the learned feature. From Fig. 6.8b We can see that the samples are well
separated. Each class has its own output characteristics which graphically means that it
occupies a different plane range. This is the basis for transforming the model output into
belief.

There is not a direct transformation from the model output to belief, we choose the
possibility as the bridge. Since the BSF is able to map high-frequency samples to one and
low-frequency samples to zero to get a closed-class-shaped boundary. We use the BSF to
transform the model output into possibility as the first step of our method. As shown in
Algorithms 2, 3, for each testing sample we can get the corresponding possibility πn =
{π1, . . . , πi, . . . , πK}, πi ∈ [0, 1].
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Algorithm 2 The BSF’s parameters calculation process

Require:
Class number K
Training output otrain

Training label ytrain

Ensure:
BSF’s parameters a, b, c

1: Initializing BSFs’ parameters a ∈ RK×K, b ∈ RK×K, c ∈ RK×K

2: for i = 0; i < K; i ++ do
3: idx = ytrain == i
4: out = otrain[idx]
5: for j = 0; j < K; j ++ do
6: Calculating the maximum column output outmax from out[:, j]
7: Calculating qa-quantile Qqa and qb-quantile Qqb from out[:, j]
8: Calculating a[i, j] =

(
Qqb −Qqa

)
/2

9: Calculating b[i, j] =
(
Qqb −Qqa

)
/
(
outmax −Qqb

)
10: Calculating c[i, j] =

(
Qqb + Qqa

)
/2

11: end for
12: end for
13: return a, b, c

Based on the possibilities collected from all the testing samples, we can draw the pos-
sibility contours as shown in Fig. 6.9a. As it can be seen, the obtained BSFs generate
closed-class-shaped boundaries for the corresponding classes. There is a distinct separa-
tion in that the possibility of corresponding class samples, i.e., In-Domain (ID), is above
0.8 and the remaining, i.e., IM and OOD, is below 0.5. A clear possibility boundary lead-
ing to an unambiguous belief boundary can facilitate the classification of ID, IM, and
OOD samples.

Revealed by Figs. 6.8b, 6.9a, the first-class features a scattered rectangle shape and has
overlaps with the remaining three classes. The overlap among learned features will lead
to inaccurate boundaries and misclassified samples from other classes. Inspired by the
feature distribution, we used the contrastive-center loss function to improve the discrim-
inative power of the model. The distribution of learned features under the joint super-
vision of contrastive-center loss is shown in Fig. 6.8c. From the results obtained, there is
an improvement that the learned feature is more concentrated and compacted compared
to the model trained by cross-entropy loss function. By comparing the learned features
and boundaries for pre-trained, i.e., Fig. 6.8b, 6.9a and fine-tuned, i.e., Fig. 6.8c, 6.9b. We
can observe: (1) under the supervision of cross-entropy loss function learned features are
separable, (2) the learned features are not discriminative enough, since they still show
inner-class variations, and contrastive-center loss function outperforms.

Another challenge is the quantity of predicted subsets increases exponentially with
the class number, which could preclude the application of partial classification [TXD21].
We presented a strategy to give beliefs merely to the K + 1 main subsets, including the
empty set and subsets whose cardinality range from 1 to K. The empty set represents
the OOD class, which corresponds to the OOD samples. Then, we define our nested pre-
dicted subsets {∅, {ωi}, {ωi, ωj}, {ωi, ωj, ωk}, . . . , Ω}. The subset {ωi} represents the set
of the most probable class, the subset {ωi, ωj} represents the set of the top two probable
classes, etc. Following the theory proposed in [DP82, AD08] that any possibility distri-
bution is a plausibility function corresponding to a consonant m. Our possibility dis-
tribution πn can be transformed to belief function m according to Eq. (6.6), the detailed
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Algorithm 3 The transformation from the model output to the possibility

Require:
Class number K
Testing sample number Ntest

Testing output otest

Training output otrain

Training label ytrain

Ensure:
Testing possibility πtest

1: Initializing πtest ∈ RNtest×K equals 0
2: Calculating the BSF’s parameters a, b, c based on Algorithm. 2 from otrain and ytrain.
3: for i = 0; i < K; i ++ do
4: Initializing v ∈ RNtest

equals 0
5: for j = 0; j < K; j ++ do
6: v+ = 1

1+| o
test [:,j]−c[i,j]

a[i,j] |2×b[i,j]

7: end for
8: πtest[:, i] = v
9: end for

10: πtest/ = K
11: return πtest

(A) Model trained by the cross-entropy loss function.

(B) Model trained by the contrastive-center loss function.

FIGURE 6.9: The boundary (possibility contour) obtained by BSF for the four-class dataset.

calculation is presented in Fig. 6.10.

m(Ai) =


1− π1 if Ai = ∅,
πj − πj+1 if Ai = {ω1, · · · , ωj}, j ∈ {1, · · · , K− 1},
πK if Ai = Ω,
0 otherwise.

(6.6)
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FIGURE 6.10: The belief calculation process in PCBS.

xn m(∅) m(A1) m(A2) m(A3) m(Ω) Prediction
x1 0.54 0.16 0.08 0.06 0.16 ∅
x2 0.03 0.63 0.02 0.16 0.16 {ωi}
x3 0.17 0.11 0.42 0.12 0.18 {ωi, ωj}
x4 0.13 0.27 0.10 0.30 0.19 {ωi, ωj, ωk}
x5 0.37 0.03 0.01 0.03 0.56 Ω

TABLE 6.4: Partial classification of five samples mentioned in Fig. 6.11a based on the MLP
trained by the cross-entropy loss function.

Based on the belief calculated through Eq. (6.6), we can execute the partial classifi-
cation by choosing the subset with the maximum belief as the prediction. The partial
classification result for four-class dataset is shown in Figs. 6.11a and 6.11c. As can be
seen from the figure, both the pre-trained and fine-tuned models are able to identify ID,
IM, and OOD samples. Compared with the fine-tuned model, the pre-trained model has
a slight weakness: (1) some of the samples belonging to the second, third, and fourth
classes are classified into a set of two classes, and (2) some of the samples belonging to
the third and fourth classes are grouped into a set of three classes. In contrast, the clear
and concise partition is obtained by the fine-tuned model. To make it more clear, we
chose five samples, i.e., x1 ∼ x5 as shown in Figs. 6.11a and 6.11c predicted in different
subsets to present the interest of the partial classification. Suppose, the maximum belief
is m(Ai), the PCBS method will generate the predicted set {ω1, . . . , ωi} corresponding to
the top i maximum outputs. Tables. 6.4, 6.5 manifest the detailed values as well as pre-
diction according to partial classification based on different training strategies. It is well
shown how our method calculates and makes predictions. It also further supports the
feasibility of PCBS method.

The interchangeability between partial classification and uncertainty estimation can
be achieved with the help of pignistic transformation Eq. (6.7). In order to keep the OOD
information available provided by the empty set of the evidential space, a new class ωood
is added to the probabilistic universe. Traditional formula BetP Eq. 2.7 is then trans-
formed into Eq. 6.7. Consequently, BetP is taking as entry the universe of probabilistic
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(A) The partial partition based on MLP trained
by cross-entropy loss.

(B) The precise partition based on MLP trained
by cross-entropy loss.

(C) The partial partition based on MLP trained
by contrastive-center loss.

(D) The precise partition based on MLP trained
by contrastive-center loss.

FIGURE 6.11: The partition is obtained from different strategies (partial and precise) based on
the calculated beliefs. Five special cases, i.e., x1 ∼ x5 are selected from different predicted

subsets to show the detailed calculation process in Tables. 6.4, 6.5, 6.6, and 6.7.

xn m(∅) m(A1) m(A2) m(A3) m(Ω) Prediction

x1 0.56 0.05 0.07 0.27 0.05 ∅
x2 0.02 0.62 0.14 0.07 0.15 {ωi}
x3 0.39 0.04 0.46 0.01 0.10 {ωi, ωj}
x4 0.27 0.27 0.02 0.28 0.16 {ωi, ωj, ωk}
x5 0.36 0.05 0.03 0.01 0.55 Ω

TABLE 6.5: Partial classification of five samples mentioned in Fig. 6.11c based on the MLP
trained by the contrastive-center loss function.

theory, i.e., ΩBetP = {ωood, ω1, . . . , ωi, . . . , ωK}. Once the belief is transformed into prob-
ability, we can fulfill uncertainty estimation easily by choosing the class with the maxi-
mum probability.

BetP(ω) =

{
m(∅) if ω = ωood,
∑ω∈A

m(A)
|A| if ω ̸= ωood, ω ∈ Ω.

(6.7)
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As mentioned, BetP(ωood) = m(∅), the sum of the probability equals one, the math-
ematical proof follows.

∑
ω∈ΩBetP

BetP(ω) = BetP(ωood) +
K

∑
i=1

BetP(ωi)

= m(∅) +
K

∑
i=1

m(Ai)

|Ai|
+ · · ·+

K

∑
i=K

m(Ai)

|Ai|

= m(∅) + 1× m(A1)

|A1|
+ · · ·+ K× m(AK)

|AK|
= m(∅) + m(A1) + · · ·+ m(AK) = 1.

(6.8)

In a similar way, the risk relative to uncertainty estimation is minimized by choosing
the class with maximum probability. As can be seen from Fig. 6.11, both the pre-trained
model and the fine-tuned model are able to identify the testing sample accurately. In
addition, PCBS method can classify both the OOD and IM samples into OOD class ∅.
Intuitively, the fine-tuned model outperforms the pre-trained model. The detailed calcu-
lation based on the same five samples as showed in Figs. 6.11b and 6.11d are shown in
Tables. 6.6 and 6.7. From the tables, we can see how the belief converts into probability.
Consider the second sample x2, for example, fed it into the fine-tuned model obtains with
belief {0.02, 0.62, 0.14, 0.07, 0.15} whose probability for the second class after transforma-
tion is 0.75 = 0.62

1 + 0.14
2 + 0.07

3 + 0.15
4 .

xn BetP(ωood) BetP(ω1) BetP(ω2) BetP(ω3) BetP(ω4) Prediction

x1 0.54 0.26 0.10 0.06 0.04 ωood
x2 0.03 0.73 0.09 0.10 0.05 ω1
x3 0.17 0.41 0.30 0.09 0.03 ω1
x4 0.13 0.20 0.05 0.47 0.15 ω3
x5 0.37 0.18 0.15 0.16 0.14 ωood

TABLE 6.6: Uncertainty estimation of five samples mentioned in Fig. 6.11b based on the MLP
trained by the cross-entropy loss.

xn BetP(ωood) BetP(ω1) BetP(ω2) BetP(ω3) BetP(ω4) Prediction

x1 0.56 0.01 0.10 0.14 0.19 ωood
x2 0.02 0.06 0.75 0.04 0.13 ω2
x3 0.39 0.03 0.03 0.26 0.29 ωood
x4 0.27 0.42 0.14 0.13 0.04 ω1
x5 0.36 0.20 0.14 0.16 0.14 ωood

TABLE 6.7: Uncertainty estimation of five samples mentioned in Fig. 6.11d based on the MLP
trained by the contrastive-center loss.

6.2.3 Experiments

This section reports some experimental results that show various aspects of the proposed
method. It is subdivided into three parts:
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1. For choosing the optimum BSFs parameters for the pre-trained model as well as the
fine-tuned model, the main parameters qa and qb are monitored, the observation of
the variability of the results over the 12 UCI datasets is discussed in Section 6.2.4.

2. Take different reject rates, present and discuss the partial classification perfor-
mances of different methods, i.e., partial classifier in the belief function framework
(hereafter called PCBF) [MD21], pre-trained PCBS, and fine-tuned PCBS) on 12 UCI
datasets in Section 6.2.5. We also conduct an abundant analysis that leads to an
improved understanding of our approach.

3. In Section 6.2.6, we describe experimental steps of how PCBS method can be
used as the uncertainty estimation. And show the effectiveness of PCBS method
on a wide range of BSF evaluation benchmarks, i.e., softmax score, pre-trained
energy score [LWOL20], fine-tuned energy score [LWOL20], pre-trained PCBS,
and fine-tuned PCBS and different datasets, i.e., Cifar10 [Kri12], Cifar100 [Kri12],
Isun [YZS+15], Places365 [ZKL+17], Textures [CMK+14], Svhn [NWC+11], Lsun
Crop [YZS+15], and Lsun Resize [YZS+15].

6.2.4 Parameter choosing

As we can see from Algorithm. 2 line 6, the BSF is calculated based on two principal pa-
rameters qa and qb. In reality, qa + qb ≤ 1, but in this thesis, the qa and qb constraint to
qa + qb = 1, and qa ≤ qb. Consequently, we can calculate qb = 1− qa from qa. From Al-
gorithm. 2 lines 7, 8, and 9, we can see that a, b and c all greater than zero. Consequently,
for both pre-trained and fine-tuned model, set different qa from 0 to 0.5 (not included),
and test with various datasets to get the optimum settings for these two hyperparam-
eters. As displayed in Fig. 6.12, the left parts of each subfigure show the ADA, while
the right parts show the AC. The smaller the qa (as displayed in the Algorithm 2 line 7,
a = (qb − qa)/2 = (1 − 2qa)/2) the wider the BSF function is, resulting in containing
more samples. Mapping more certain samples’ possibility to one leads to larger ADA
and smaller AC values. But there are some datasets, e.g. Wine Red, where the small
initial ADA, i.e., 0.2 accompanied by a large initial AC, i.e., 5.0. This is because (1) the
dataset contains too many confusing samples, which is due to the characteristics inher-
ently, and (2) the BSF function maps the confusing sample’s possibility to one leading to
the predicted set having a large cardinality. In contrast, the Mushroom dataset occupies a
large initial ADA, i.e., 1.0, and small initial AC, i.e., 1.0. This indicates that (1) the dataset
is clear, inherently, and (2) the learned feature is more concentrated, the samples are well
classified. As qa increases, BSF maps fewer sample possibilities to one, which in turn in-
creases the confidence of precise classification. The reflection in the figure is the AC and
ADA values gradually decrease as qa increases. The user can choose different parameter
settings depending on the needs of the different scenarios. Here, to compare with other
methods, we set qa to 0.05 to achieve the best ADA and avoid overconfidence.

6.2.5 Partial classification

6.2.5.1 Experiment protocol

For partial classification, we selected 12 UCI classification datasets for our experiments,
as summarized in Table. 6.8. The UCI dataset is not the real image dataset, but the at-
tribute of each UCI dataset can be regarded as the output extracted by the Neural Net-
work (NN)s. Consequently, the usage of UCI dataset is hemogerous with the thesis sub-
ject. The classical MLP contains three hidden layers and two fully connected layers is
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(A) MLP trained by the cross-entropy loss function.

(B) MLP trained by the contrastive-center loss function.

FIGURE 6.12: The ADA and AC curves were plotted as a function of qa based on 12 UCI
datasets. In order to achieve the best ADA and avoid overconfidence, we set qa to 0.05.
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Dataset # Sample # Attribute # Used class

Balance Scale 625 4 3
Breast Cancer 105 9 4
Method Choice 1473 9 3
Ecoli 336 7 8
Haberman Survival 306 3 2
Hayes Roth 160 4 3
Ionosphere 351 33 2
Iris 150 4 3
Lung Cancer 32 56 3
Mushroom 8124 21 2
Spect Heart 267 22 2
Wine Red 1599 11 6

TABLE 6.8: An overview of datasets involved in PCBS for partial classification.

used as the target model. For training, we use the holdout strategy, that is to say, 70% of
samples are used for training, and 30% of samples used for testing. The cross-entropy loss
function is used for pre-trained model and contrastive-center loss function is adopted for
fine-tuned model. For contrastive-center loss function, we adopt the optimum parameter
configurations, i.e., δ = 1, and λ = 1 as the original paper [QS17]. For method com-
parison, since the PCBS can be used under both pre-trained and fine-tuned contexts, we
choose PCBF [MD21] and the same experiment settings for comparison. For the NN, we
abandon the previous used NNs, e.g., LeNet, GoogLeNet. The motivation behind this is
the superior NN can bring better performance.

6.2.5.2 Performance

By choosing the predicted set with the maximum belief, the PCBS method can per-
form partial classification. Naturally, the bigger the predicted set cardinality indicates
the more confusing sample is. Consequently, to show the efficiency and capacity of the
PCBS method of performing partial classification and reducing the classification risk, the
most confusing samples are rejected according to different reject rates [NZH09].

On the one hand, to manifest the efficiency of different methods against a small reject
rate, the reject rate is set to equal 0.1 and receive Fig. 6.13. For PCBS method, the fine-
tuned outperforms the pre-trained. In addition, except for the Haberman Survival and
Wine Red datasets, both pre-trained and fine-tuned PCBS method is better than the ex-
isting PCBF method. This is due to the inherent characteristics of the dataset. As we can
see from Fig. 6.14, the overlap among samples, both pre-trained and fine-tuned, is severe
that PCBS method is unable to obtain clear closed-class-shaped boundaries. Thus, to be
on the cautious side, PCBS method assigns the samples into predicted sets containing
more than one class, leading to a decrease in ADA and an increase in AC.

On the other hand, the average values for different reject rates based on 12 UCI
datasets are demonstrated in Fig. 6.15. When the confusing samples are rejected, a more
confident prediction can be made, so that the AC decreases from large to small until it
reaches one. At the same time, the ADA increases. Ideally, the ADA should reach one
when all the confusing samples are rejected. But, due to the overlap of the learned fea-
tures and the models’ bias, some certain samples are misclassified as confusing samples
and are rejected. As a result, ADA can not reach one. This is particularly obvious for
the PCBF method. For our method, the fine-tuned is slightly better than the pre-trained.
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FIGURE 6.13: The comparison among different methods when reject rate equals 0.1.

(A) Haberman Survival dataset.

(B) Wine Red dataset.

FIGURE 6.14: Learned feature distributions of two UCI datasets based on pre-trained MLP (left)
and fine-tuned MLP (right).

Compared to the insensitivity of the PC method, PCBS method performs better and is
more feasible.
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FIGURE 6.15: The ADA and AC values are based on different reject rates for 12 UCI datasets.
First, calculate ADA and AC for 12 UCI datasets based on different reject rates. Then, for each

single reject rate calculate the average values based on 12 UCI datasets.

Type Name # Used class # Training sample # Testing sample

ID
Cifar10 10 50000 10000
Cifar100 100 50000 10000

OOD

Isun - - 2000
Places365 - - 2000
Textures - - 2000
Svhn - - 2000
Lsun Crop - - 2000
Lsun Resize - - 2000

TABLE 6.9: An overview of datasets involved in PCBS for uncertainty estimation.

6.2.6 Uncertainty estimation

6.2.6.1 Experiment protocol

For uncertainty estimation, we use Cifar10 [Kri12], and Cifar100 [Kri12] datasets as
ID datasets. For the OOD datasets, we use six prevalent benchmarks, Isun [YZS+15],
Places365 [ZKL+17], Textures [CMK+14], Svhn [NWC+11], Lsun Crop [YZS+15], and
Lsun Resize [YZS+15]. Table 6.9 reports the two types of datasets selected for the exper-
iments. A classical WideResNet which contains 40 layers is chosen as the target model.
For method comparison, we choose energy score [LWOL20] and the same experiment
configurations.
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Dtest
in fine-tuned? Dtest

ood FPR95↓ AUROC ↑ AUPR↑

WideResNet
Cifar10

No

PCBS score / Energy score
iSUN 19.85 / 32.10 97.13 / 92.92 99.48 / 98.38
Places365 35.35 / 39.30 96.08 / 90.53 99.29 / 97.47
Texture 0.00 / 52.95 98.41 / 85.43 99.71 / 95.68
SVHN 0.00 / 33.85 98.98 / 91.30 99.82 / 97.74
LSUN-Crop 80.65 / 8.40 89.77 / 98.29 98.09 / 99.63
LSUN-Resize 18.25 / 26.25 97.16 / 94.54 99.48 / 98.73
average 25.68 / 32.14 96.26 / 92.17 99.31 / 97.94

WideResNet
Cifar10

Yes

PCBS score / Energy score
iSUN 18.25 / 1.40 97.24 / 99.32 99.50 / 99.87
Places365 36.75 / 8.20 96.03 / 97.77 99.28 / 99.40
Texture 0.00 / 5.80 98.49 / 98.57 99.72 / 99.69
SVHN 0.00 / 1.55 98.69 / 99.25 99.76 / 99.85
LSUN-Crop 78.05 / 1.55 90.21 / 99.25 98.16 / 99.85
LSUN-Resize 19.50 / 1.40 97.15 / 99.32 99.48 / 99.86
average 25.43 / 3.32 96.30 / 98.92 99.32 / 99.75

TABLE 6.10: The uncertainty estimation performance comparison between PCBS and energy
score based on Cifar10 dataset. All values are percentages, ↑ indicates larger values are better, ↓
indicates smaller values are better, and the best value is bold. The PCBS method outperforms,
except the fine-tuned model based on the Cifar10 dataset that is due to our method does not
need the BSF dataset for fine-tuning. The PCBS method is superior when the BSF dataset is

unavailable.

6.2.6.2 Performance

We begin by assessing the improvement of PCBS method over the energy
score [LWOL20]. Tables. 6.10 and 6.11 contain a detailed comparison based on the Cifar10
and Cifar100 datasets. We show that using PCBS method based on pre-trained model re-
duces the average False Positive Rate 95 (FPR95) compared to the pre-trained energy
score based on the Cifar10 dataset. However, for the fine-tuned model, PCBS method is
not as good as the energy score on the Cifar10 dataset.

The reason is, as we can see from Table. 6.12, the information required varies from
method to method. For softmax, it only requires the testing output, so it performs the
worst. For the pre-trained model, the PCBS method requires the additional training out-
put than the energy score, and it can be seen that PCBS method outperforms both on Ci-
far10 and Cifar100. For fine-tuned model, in contrast to the energy score, which requires
information from the BSF dataset, PCBS method only requires information from training
output. In some cases where BSF datasets are unavailable, our method is more advanta-
geous. In Table. 6.13, we presented the average values for different methods based on six
OOD datasets. The PCBS method achieves comparable and better performance than the
energy score.

6.2.7 Other decision making strategies for partial classification

In addition to the mentioned heuristic decision-making strategy, i.e., choosing the sub-
set with maximum belief as the prediction. We also proposed several decision-making
strategies based on minimum classification loss. We will start with the precise classifica-
tion and gradually transition to partial classification.
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Dtest
in fine-tuned? Dtest

ood FPR95↓ AUROC ↑ AUPR↑

WideResNet
Cifar100

No

PCBS score / Energy score
iSUN 0.00 / 80.60 98.39 / 79.05 99.71 / 94.86
Places365 55.90 / 80.25 93.64 / 75.94 98.81 / 93.63
Texture 22.05 / 79.85 97.07 / 75.48 99.46 / 93.31
SVHN 0.00 / 85.45 99.02 / 74.51 99.82 / 93.79
LSUN-Crop 92.70 / 35.00 82.67 / 93.57 96.65 / 98.63
LSUN-Resize 0.00 / 80.00 98.60 / 78.97 99.75 / 94.94
average 28.44 / 73.53 94.90 / 79.59 99.03 / 94.86

WideResNet
Cifar100

Yes

PCBS score / Energy score
iSUN 0.00 / 69.10 98.30 / 78.19 99.69 / 94.11
Places365 54.10 / 50.20 93.75 / 89.78 98.83 / 97.69
Texture 17.90 / 52.95 97.21 / 88.08 99.49 / 97.14
SVHN 0.00 / 20.50 98.31 / 96.52 99.69 / 99.29
LSUN-Crop 92.20 / 15.00 83.85 / 97.26 96.90 / 99.42
LSUN-Resize 0.00 / 67.85 98.57 / 80.21 99.74 / 94.79
average 27.37 / 45.93 95.00 / 88.34 99.06 / 97.07

TABLE 6.11: The uncertainty estimation performance comparison between PCBS and energy
score based on Cifar100 dataset. All values are percentages, ↑ indicates larger values are better,
↓ indicates smaller values are better, and the best value is bold. The PCBS method outperforms

in regards to both pre-trained and fine-tuned model.

Method
Information

Training output Testing output OOD dataset
Softmax - ✓ -
Energy pre-trained - ✓ -
PCBS pre-trained ✓ ✓ -
Energy fine-tuned - ✓ ✓
PCBS fine-tuned ✓ ✓ -
PCMO - ✓ -

TABLE 6.12: Information needed of different methods. ✓ indicates needed, and - indicates no
needed.

6.2.7.1 Precise classification

For precise classification, its goal is to choose the label that can minimize the classification
risk, i.e., ŷ = argmin

yi

R(yi | x). The R(yi | x) represents the risk of classify sample x as yi.

R(yi | x) =
K

∑
j=1

ℓ(yi | yj)p(yj | x) = 1− p(yi | x), (6.9)

where

ℓ(yi | yj) =

{
0, yi = yj,
1, yi ̸= yj.

(6.10)

To minimize the classification risk, the class with maximum probability is chosen as
the prediction.

ŷ = argmin
yi

R(yi | x) = argmin
yi

1− p(yi | x) = argmax
yi

p(yi | x). (6.11)
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Dtest
in method FPR95↓ AUROC ↑ AUPR↑

Cifar10

PCBS pre-trained 25.68 96.26 99.31
PCBS fine-tuned 25.43 96.30 99.32
Energy pre-trained 32.14 92.17 97.94
Energy fine-tuned 3.32 98.92 99.75
Softmax 50.16 91.26 98.04

Cifar100

PCBS pre-trained 28.44 94.90 99.03
PCBS fine-tuned 27.37 95.00 99.06
Energy pre-trained 73.53 79.59 94.86
Energy fine-tuned 45.93 88.34 97.07
Softmax 80.25 75.62 93.95

TABLE 6.13: The comparison among different uncertainty estimation methods. ↑ indicates
larger values are better, and ↓ indicates smaller values are better. All values are percentages

and are averaged over the six BSF test datasets described in Table. 6.9.

6.2.7.2 Partial classification

Same to the precise classification, the goal of partial classification is to make a decision
by choosing the subset that can minimize the classification risk. As can be seen from the
Eq. (6.9), the problem to be solved is the determination of the loss function ℓ(·) and the
belief function m(·).

On the one hand, we can build a new loss function ℓ(Ai | Aj) inspired by the IoU loss.
Since we have got the belief function, the classification risk can be derived easily.

Â = argmin
Ai

R(Ai | x), (6.12)

R(Ai | x) = ∑
Aj⊆Ω′

ℓ(Ai | Aj)m(Aj | x), (6.13)

ℓ(Ai | Aj) = 1−
| Aj ∩ Ai |
| Aj ∪ Ai |

. (6.14)

On the other hand, we can use ℓ(Ai | yj) approximate ℓ(Ai | Aj). Now, the new
problem is to construct the ℓ(Ai | yj) loss. Fortunately, several similar loss functions have
been proposed, e.g., discount accuracy, utility function or Fβ score.

ℓ(Ai | Aj) = min
yk∈Aj

ℓ(Ai | yk), (6.15)

ℓ(Ai | Aj) = max
yk∈Aj

ℓ(Ai | yk). (6.16)

We can use discount accuracy, utility function or Fβ score (K× K) to extend the origi-
nal “0/1" loss to extended loss (2K × K).

ℓ(Ai | yk)
discount =

{
1− 1

Ai
, yk ∈ Ai,

0, otherwise.
(6.17)

ℓ(Ai | yk)
utility =

{
1− g( 1

Ai
), g(x) = −0.6x2 + 1.6x, yk ∈ Ai,

0, otherwise.
(6.18)

ℓ(Ai | yk)
Fβ =

(1 + β2)PR
β2P + R

, R = I(yk ∈ Ai), P =
R
| Ai |

. (6.19)
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Based on Eq.6.16, it is easy to get the ℓ(Ai | Aj). Furthermore, partial classification
can be made use Eq. (6.9).

6.2.8 Uncertainty estimation comparison between SLUE and PCBS

Since both SLUE and PCBS can fulfill uncertainty estimation methods, we compared
these performances dealing with confusing samples. First, the WideResNet is trained
using Cifar10 and Cifar100, respectively. Then six datasets are used as OOD dataset and
FPR95, Area Under the Receiver Operating Characteristic (AUROC), and Area Under the
Precision Recall Curve (AUPRC) are computed as shown in the Table 6.14. From the re-
sults, we can see that the SLUE method is inferior to the PCBS method for the Cifar10
dataset. However, for Cifar100, SLUE achieved better results in terms of AUROC and
AUPRC. The only difference between the two datasets is the different class numbers,
thus it can be inferred that for a small class number, the PCBS can achieve a more accu-
rate transformation from model output to belief by the BSF. However, when the classes
number is large, it is better to compute uncertainty directly through a simple formula.
This is because the direct calculation reduces the information lost in the transformation
from model output to belief.

Dtest
in fine-tuned? Dtest

ood FPR95↓ AUROC ↑ AUPR↑

WideResNet
Cifar10

Yes

PCBS score / SLUE score
LSUN-Crop 78.05 / 22.86 90.21 / 99.04 98.16 / 95.52
Svhn 0.00 / 34.65 98.69 / 97.24 99.76 / 87.06
LSUN-Resize 19.50 / 47.46 97.15 / 96.14 99.48 / 81.23
Isun 18.25 / 37.52 97.24 / 95.58 99.50 / 78.87
Texture 0.00 / 76.64 98.49 / 94.07 99.72 / 74.92
Places365 36.75 / 51.64 96.03 / 94.71 99.28 / 76.20
average 25.43 / 45.13 96.30 / 96.13 99.32 / 82.30

WideResNet
Cifar100

Yes

PCBS score / SLUE score
LSUN-Crop 92.20 / 99.74 83.85 / 99.95 96.90 / 99.96
Svhn 0.00 / 96.31 98.31 / 99.91 99.69 / 99.92
LSUN-Resize 0.00 / 0.00 98.57 / 100.00 99.74 / 100.00
Isun 0.00 / 99.74 98.30 / 99.85 99.69 / 99.88
Texture 17.90 / 99.90 97.21 / 97.29 99.49 / 97.64
Places365 54.10 / 0.00 93.75 / 100.00 98.83 / 100.00
average 27.37 / 65.95 95.00 / 99.50 99.06 / 99.57

TABLE 6.14: The uncertainty estimation performance comparison between PCBS and SLUE.
All values are percentages, ↑ indicates larger values are better, ↓ indicates smaller values are

better, and the best value is bold.

6.2.9 Partial classification comparison between PCMO and PCBS

Same as uncertainty estimation, we compared the partial classification performance of
PCBS and PCMO. The MLP is trained based on the UCI datasets, and ADA and AC are
calculated based on the model output, as shown in Fig. 6.16, we calculated the average
ADA and AC based on the 12 UCI datasets. As can be seen, the PCMO is inferior to
the PCBS. It is reasonable because that PCMO merely uses information from the testing
output as shown in Table 6.12. In addition, the ADA (AC) of both methods gradually
increases (decreases) as the reject rate increases.
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FIGURE 6.16: The comparison between PCBS and PCMO of ADA and AC values based on
different reject rates for 12 UCI datasets. First, calculate ADA and AC for 12 UCI datasets
based on different reject rates. Then, for each single reject rate calculate the average values

based on 12 UCI datasets.

6.2.10 Conclusions

In order to deal with a variety of confusing samples, a new partial classification named
PCBS is proposed. The time-consuming associates to the BSF calculation, thus, the time
complexity related to the class number is O(K2). It can not only pay attention to the par-
tial classification but also can be transformed into uncertainty estimation by the pignistic
transformation. At first, we theoretically and empirically demonstrate the PCBS method
in the view of the four-class dataset which comprises mainly four modules: BSFs gen-
eration, output to possibility transformation, possibility to belief transformation, and
belief to probability transformation. Meanwhile, we fine-tuned PCBS method, by em-
ploying the contrastive-center loss function, and the fine-tuned model outperforms the
pre-trained model. Then, we verified PCBS method with different state-of-art methods
based on several datasets. There are two branches, for partial classification, we compare
with the PCBF method based on the ADA and AC for different reject rates. For precise
classification with reject option, we compared with the energy score, on behave of the
FPR95, AUPRC, and AUROC. Moreover, we demonstrate how to choose the optimum
BSF parameters, in order to get the best ADA, we set qa equals 0.05. From the produc-
tion, we can tell that PCBS method performs better than state-of-the-art methods, as it can
provide high confidence to a certain sample, as well as a high uncertainty to a confusing
sample. The PCBS method proved effective in increasing the reliability of classifiers and
ultimately reducing the classification risk.
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6.3 Conclusions

The two methods proposed in this chapter, i.e., PCMO and PCBS, are both fulfilled based
on the model output. Both two methods use possibility as a bridge to achieve the trans-
formation from model output to belief. Then, the partial classification is fulfilled by se-
lecting the subset with the maximum belief. Both methods are able to achieve partial
classification without changing the model architecture or constructing a new loss func-
tion. Meanwhile, compared to PCMO, PCBS uses BSF to achieve the transformation from
output to possibility. It enables the PCBS to provide belief for both the empty set and
the entire set to make more cautious predictions. For experiments, different models are
trained based on different datasets. The results for different measurements showed the
superiority of the proposed two partial classification methods.
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Chapter 7

Conclusions

7.1 Summary of works

In this thesis, we have studied two categories of methods for dealing with confusing sam-
ples in the classification based model, i.e., uncertainty estimation and partial classifica-
tion. We have proposed three methods, i.e., SLUE [XCA21], PCMO [XAC21], and PCBS,
to improve both the accuracy and robustness when dealing with confusing samples. A
summary of works is listed below:

Uncertainty estimation: The plain strategy to deal with the confusing sample is to
detect them based on a scalar value, representing the uncertainty. Then the sample can
be classified into the Out-of-Domain (OOD) subset by comparing to a predefined thresh-
old. The Evidential Deep Learning (EDL) [SKK18] is a method based on the Subjective
Logic (SL), which uses the Dirichlet distribution to connect the model output and the
uncertainty derivation. One of the advantages of SL is that it can use base rate to fulfill
better evidence allocation. However, the EDL merely use the default base rate settings,
overlooking the import role played by the base rate. Consequently, we propose to extend
the existing EDL method by taking base rates into account. At first, we provide four po-
tential base rate initial strategies and evaluate their impact during the training process.
At the same time, we also study the hyperparameter C. Since classical accuracy only fo-
cuses on the right classified sample we propose new criteria named extended accuracy,
which takes the right classified sample and rejected wrong classified sample into account.
We also verified the SLUE method uncertainty performance through OOD and adversar-
ial datasets. The most obvious finding is that guided by base rates, the SLUE method
works better not only in terms of extended accuracy but also on the uncertainty estima-
tion performance. As it can reject confusing samples, this approach will prove useful in
improving model robustness.

Partial classification: In order to reduce the risk by classifying confusing samples into
OOD class only based on a scalar value. We propose to use partial classification to make
cautious predictions by classifying confusing samples into class subsets. Meanwhile,
making the partial classification feasible and packageable as an auxiliary module is an-
other major motivation. We present a new partial classification method named PCMO,
which is fulfilled based on pre-trained Convolutional Neural Network (CNN) based
model outputs. Based on different datasets and Neural Network (NN)s, we showed
that a sample far from the training dataset can provide high outputs and lead to high
probabilities for several classes. We adopted possibility as the bridge fulfilling the trans-
formation from model outputs to beliefs for the predicted sets. This process includes two
sub-processes, the output to possibility transformation and the possibility to belief trans-
formation. We adopt the log function and the max-min normalization fulfilled the first
sub-process, and we also tested different normalization strategies. The obtained possi-
bility is converted into belief for nested subsets whose cardinality range from 1 to K − 1
under the Dempster-Shafer Theory (DST). The PCMO method has been verified on four
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prevalent datasets, four classical CNN-based models, and compared with three existing
methods. The performance showed that the PCMO method makes it possible to improve
classification accuracy and to make cautious decisions by assigning a sample to a class
subset.

There are two weaknesses in the PCMO method. The belief calculation process in
PCMO involves many steps, such as computing a temporary variable and performing
normalization. Those steps might lead to a loss of information. At the same time, the
PCMO method is not able to provide belief for the empty set or the entire set. Conse-
quently, a new partial classification named PCBS is proposed. First, the PCBS method
can generate the Bell Shaped Function (BSF)s based on the training output. Second, the
testing output is converted into the possibility under the obtained BSFs. The advan-
tage of using BSF is that it can generate a closed-class-shaped boundary for each class
and make it possible to assign beliefs to both the empty set and the entire set. Finally,
the possibility is transformed into the belief to perform partial classification. Addition-
ally, with the help of pignistic transformation, the calculated belief can be converted into
probability to achieve the uncertainty estimation. This feature enhances the interchange-
ability between the partial classification and the uncertainty estimation. Moreover, the
contrastive-center loss function is employed to efficiently ensure inner-class compact-
ness and inter-class separability to have a better classification. Experiments with 12 UCI
datasets and eight prevalent datasets based on five different criteria show the excellent
performance of PCBS method as compared to the state-of-the-art methods. It can be
concluded that PCBS method makes it possible to improve models’ robustness by either
rejecting confusing samples or assigning confusing samples to class subsets.

Publications: Based on the works during this thesis, we have published two papers
at the International conferences and submitted one to an international journal.

1. Jiarui Xie, Thierry Chateau, and Violaine Antoine. A subjective-logic-based model
uncertainty estimation mechanism for out-of-domain detection. In International
Joint Conference on Neural Networks, pages 1–6, 2021. Accepted.

2. Jiarui Xie, Violaine Antoine, and Thierry Chateau. PCMO: Partial classification
from CNN-based model outputs. In Neural Information Processing, pages 150–163,
2021. Accepted.

3. Jiarui Xie, Violaine Antoine, and Thierry Chateau. Partial Classification Based on
Bell-Shaped Function and Dempster-Shafer Theory. Pattern Recognition. Under
Review.

7.2 Future works

In this section, we present several future directions of research that could come out from
this thesis.

7.2.1 Short-term future works

For the SLUE method:

1. In SLUE, we adopt the mean square loss function proposed in EDL. The EDL
method just integrates the Dirichlet distribution into the classical mean square loss
function by multiplying. Consequently, we want to explore more potential options.
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2. Apart from the base rate update strategy mentioned in the SLUE method, another
strategy can also be an option that is to use the frequency of each class to update
the base rate.

3. Although extensive research has been carried out, the strategy that rejecting sam-
ples only based on the uncertainty value is sometimes improper. Since SL can gen-
erate opinions over the hyper domain (reduced power set 2Ω/{∅, Ω}), we are going
to give belief to states in the hyper domain. One critical problem of giving belief
for subsets is that the cardinality of the reduced power set 2|Ω| − 2 increased ex-
ponentially along with the cardinality of Ω. In addition, generating the evidence
for the element of reduced power set from K outputs is challenging. Consequently,
we proposed to use the Hierarchical Agglomerative Clustering (HAC) algorithm
[Sib73, Def77] to give evidence to the primary subset. The main steps are summa-
rized as follows.

(a) Using the HAC algorithm to calculate the Euclidean distance between the cur-
rent cluster and the rest clusters.

(b) Since evidence cannot be provided for the entire set, the cluster number is
calculated one by one from 2 to K. The cluster number that maximizes the
Calinski-Harabasz Index (CHI) [CH74] value is selected as the target cluster
number.

(c) The average evidence of the elements in each subset is regarded as the corre-
sponding evidence.

(d) Calculating beliefs for the obtained subsets (clusters), and choosing the subset
with the maximum belief as the prediction.

For the PCMO and PCBS methods:

1. The PCMO cannot give beliefs to the entire set or the empty set due to the max-min
normalization, it is interesting to invent a normalization strategy to alleviate the
drawbacks brought by the max-min normalization.

2. For the PCMO method, apart from focusing on creating a new normalization strat-
egy, we can also try to give beliefs based on the obtained beliefs. For example, we
can gradually remove the belief less than the threshold and assign the removed
belief to the rest subsets, until the current belief is greater than the threshold.

3. The loss function used in the PCBS is only based on the learned feature. It is promis-
ing to extend the current loss function by combining the BSF with the contrastive-
center loss function to perform a more effective fine-tune strategy. In addition, the
contrastive-center loss function uses the Euclidean distance, but for some nonlinear
datasets, the Mahalanobis distance is more proper.

4. For both PCMO [XAC21] and PCBS, we only use the simplest way to make the
decision, i.e., choosing the subset with the maximum belief as the prediction. It
is better to explore the performance by using other decision approaches, such as
presented in the [MD21].

7.2.2 Long-term future works

1. In many real-life scenarios, it is difficult to obtain labeled samples, which requires
experts in the field to do manual labeling, and the time cost and economic cost
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are both large. Active learning uses a certain algorithm to query the most useful
unlabeled samples, hands them to experts for labeling, and then uses the queried
samples to train a classification model to improve the accuracy of the model. The
most commonly used strategies for the design of query functions in active learning
methods are uncertainty criteria and diversity criteria. The obtained uncertainty
determines which unlabeled samples should be labeled next. Uncertainty based ac-
tive learning strategies for deep learning applications have been successfully used
in several works [GIG17, NDH19]. Consequently, we are going to integrate the pro-
posed uncertainty estimation method into active learning to improve the precision
and robustness of sample labeling.

2. Image segmentation is the technique and process of dividing an image into a num-
ber of specific regions with unique properties and interests. The existing image
segmentation methods are divided into the following categories: threshold based
segmentation methods, region based segmentation methods, edge based segmen-
tation methods, and specific theories based segmentation methods. Images may
contain noise, and each pixel also needs to be partially classified or rejected. Intu-
itively, it is promising to apply the uncertainty estimation and partial classification
method to image segmentation tasks.
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