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Introduction

Clustering algorithm

Determine groups of N objects

● xi ∈ {x1 . . . xN} the set of objects with p attributes

● ωk ∈ Ω = {ω1 . . . ωc} the set of clusters
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Introduction

Clustering methods

Group data objects into clusters based on a similarity notion

Problematic

No background knowledge

● How to define a similarity notion ?

● How to detect the expected classification ?
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Introduction

Constrained clustering

Incorporating constraints into a clustering method

● Model level

❍ balanced clusters

❍ negative information : one model rejected

● Cluster level

● Instance level

⇒
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Motivations

Clustering
Theory of belief

functions [1]

ECM [2]
Mahalanobis

distance

ECM-Mah

CECM [4]

background knowledge [1]

[1] P. Smets, The transferable
belief model for quantified
belief representation, 1998

[2] M.-H. Masson & al, ECM :
An evidential version of the
fuzzy c-means algorithm,
2008

[3] K. Wagstaff & al,
Constrained k-means
clustering with background
knowledge, 2001

[4] V. Antoine & al, CECM :
Constrained Evidential
C-Means algorithm, 2012
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Outline

● Background

❍ Theory of belief functions

❍ FCM and ECM

● Our contributions

❍ Using an adaptive metric

❍ Integrating constraints

❍ Active learning

● Experiments

● Conclusion and Perspectives
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Mass Function

Let Y be a variable taking values in a finite set Ω.

Mass function m : 2Ω → [0, 1]
∑

A⊆Ω

m(A) = 1

● m(A) : degree of belief specific to Y ∈ A

● If m(A) > 0 then A is a focal set
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Derivative notions

Plausibility function

Potential degree of belief that could be given to A :

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω

B1 ⊆ AA B2 ∩ A B2

Making decision : the pignistic transformation

● Belief functions space −→ probability space

BetP(ω) =
1

1 − m(∅)

∑

{A⊆Ω|ω∈A}

m(A)

|A|
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Credal partition

Clustering framework

⇒ Ω : set of clusters {ω1, . . . , ωc}

⇒ Y : actual class of the object xi

⇒ mi : partial knowledge on the class of xi

⇒ M = (mi) : credal partition

Exemple

A m1 m2 m3 m4

∅ 0 0 0 1

{ω1} 1 0.3 0 0

{ω2} 0 0.7 0 0

{ω1, ω2} 0 0 1 0

Evidential algorithms

● model with features : ECM

● relational model : EVCLUS, RECM
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Fuzzy c-means (FCM)

Geometrical model

● Each object xi has a degree of membership in each cluster k : uik

● Each cluster ωk is represented by a center vk

● Distance

❍ Euclidean d2
ik = ‖xi − vk‖

2

❍ Mahalanobis, Gustafson and Kessel method :

d2
ik = (xi − vk )

⊤Σk (xi − vk )

Aternate optimization

opt(uik) ⇄ opt(vk )

Objective function

JFCM =
N
∑

i=1

C
∑

k=1

u
β

ikd2
ik

Subject to

C
∑

k=1

uik = 1 and uik ≥ 0 ∀i , k
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ECM

Principle

● Generalization of fuzzy c-means

● goal : enhance the concept of partition by using a credal partition

Geometrical model

● Each cluster ωk is represented

by a center vk

● Centroid v j : barycenter of

centers associated to classes

composing Aj ⊆ Ω

● Distance d2
ij between xi and v j
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ECM

Objective function

JECM =
N
∑

i=1

∑

Aj⊆Ω, Aj 6=∅

|Aj |
αmi(Aj)

βd2
ij +

N
∑

i=1

δ2mi(∅)
β

subject to :







∑

Aj⊆Ω, Aj 6=∅

mi(Aj) + mi(∅) = 1

mi(Aj) ≥ 0 ∀i , j

Optimisation

Minimize JECM w.r.t mij , vk

⇒ Use of the Lagrangian multipliers
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Using an adaptive metric

Mahalanobis distance for each class ωk

● Each cluster ωk is represented by a center vk

● Each cluster ωk has a covariance matrix Sk
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such that

Sj =
1
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∑

ωk∈Aj

Sk ,

∀Aj ⊆ Ω,Aj 6= ∅
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Using an adaptive metric

New Objective function

Minimize JECM w.r.t mij , vk , Sk s.t. |Sk | = 1 ∀k = 1,C

Optimisation

Kuhn–Tucker conditions give :

● mi(Aj) identical to ECM with a Euclidean distance

● vk : system of linear equations

● Sk : similar to Gustafson et Kessel
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Using an adaptive metric
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Adding constraints in ECM

Formalization

● Joint class membership for xi , xj

mi×j(A × B) = mi(A)mj(B) ∀A,B ⊆ Ω,A 6= ∅,B 6= ∅

● In Ω2, two events

❍ θ ⇒ “xi and xj belong to the same class”
❍ θ ⇒ “xi and xj do not belong to the same class”

⇒ Plausibility to belong to the same class

pli×j(θ) =
∑

A∩B 6=∅

mi(A) mj(B)

⇒ Plausibility to belong to a different class

pli×j(θ) = 1 − mi×j(∅)−
∑

k=1...c

mi({ωk})mj({ωk})
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Adding constraints in ECM

Example

A m1 m2 m3 m4 m5 pl1×2 pl1×3 pl1×4 pl1×5

∅ 0 0 0 0 1 ⇒ θ 1 0 1 0

ω1 1 1 0 0 0 θ 0 1 1 0

ω2 0 0 1 0 0

Ω 0 0 0 1 0

1

2

3

4

5
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Evidential clustering with constraints : CECM

Basic idea

If (xi ,xj) ∈ M ⇒ pli×j(θ) low and if (xi ,xj) ∈ C ⇒ pli×j(θ) low

Objective function

JCECM = (1 − ϕ)(

N
∑

i=1

∑

Aj⊆Ω, Aj 6=∅

|Aj |
αmi(Aj)

βd2
ij +

N
∑

i=1

δ2mi(∅)
β)

+ϕ(
∑

(xi ,xj )∈M

pli×j(θ) +
∑

(xi ,xj )∈C

pli×j(θ))

subject to
∑

mi(Aj) + mi(∅) = 1 and mi(Aj) ≥ 0 ∀i , j

⇒ JCECM quadratic when β = 2, constraints are linear
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Evidential clustering with constraints : CECM
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Problematic
How to retrieve a constraints set ?

● Background knowledge

⇒ wide number of constraints, not

necessarely interesting ones

● Expert

⇒ time consuming

Uninformative constraints Redundancy

∗ image provided by Prof. Adamsbaum (AP-HP hospital, Paris) and Prof. Bloch (ENST, Paris)
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Active learning

Automatic and smart selection of constraints

Goal :

● acquire a few number of constraints at low cost

● greatly improve the clustering result

Global scheme

Data Clutering Partition

Constraints

queries
Constraints

Expert
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Active learning

Proposed method

1. Select an object classified with uncertainty

2. Select one or several objects classified with certainty

3. Ask the link to an expert
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Active learning : possible application
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Active learning : possible application
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Experiments

Datasets

# attributes # objects # classes

Iris 4 150 3

LettersIJL 16 227 3

Evaluation method

● Random constraints selection : based on the true known

classes

● Decision : Maximum of pignistic probability

● Criterion : Rand Index
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Behavior of CECM on Iris dataset
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Comparison with other algorithms

Clustering Constraints Distance

base respected modification

COP [1] k-Means Yes

DML-FCM [2] k-Means / X

CFCM [3] FCM / X

CECM ECM / X

[1] K. Wagstaff & al, Constrained k-means clustering with background knowledge,
KDID, 2001

[2] E. Xing & al, Distance Metric Learning with application to clustering with
side-information, 2002

[3] N. Grira & al, Active semi-supervised fuzzy clustering, Pattern Recognition,
2008
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Comparison with other algorithms
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Plane image

Original image ECM+Euclidean distance

{ω1}

Ω

{ω2}
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Plane image

constraints selection CECM+Mahalanobis distance

{ω1}

{ω2}
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Active learning on CECM for Iris dataset
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Conclusion
Background knowledge in clustering algorithm

clustering

belief function theory

}

→ ECM

adaptive metric & background knowledge







→ CECM

Benefits

● constraints lead to the

desired solution

● Improved performance

Problems

● Computational complexity

● sensitivity to constraints

selection

Active learning

New method based on belief function theory

Benefits

● improve clustering result

● reduce the execution time

Problems

● bad selection of

constraints
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Perspectives

Evidential clustering

● lower the computational complexity of ECM

→ decrease the number of existing subsets

● improve the use of a Mahalanobis distance in ECM

→ new computation of the centers

Constrained clustering

● new constrained clustering methods

● studying active learning methods

→ guideline

→ new measures of utility for constraints
→ new algorithms
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Thank you for your attention

Constrained Evidential Clustering 2013-12 37/37


	Background
	Theory of belief functions
	FCM and ECM

	Our contributions
	Using an adaptive metric
	Integrating constraints
	Active learning

	Experiments
	Conclusion and Perspectives

