

Constrained Evidential Clustering

V. Antoine¹ B. Quost² M.-H. Masson² T. Denœux²

¹Limos laboratory, UMR CNRS 6158, Clermont-Ferrand, France ²Heudiasyc laboratory, UMR CNRS 6599, Compiègne, France

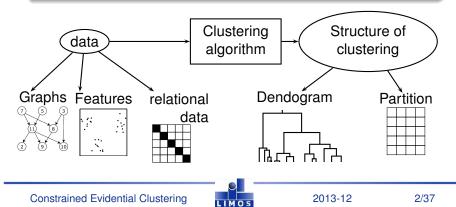
December 2013

Constrained Evidential Clustering

Clustering algorithm

Determine groups of N objects

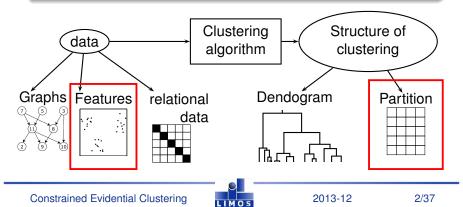
- $\mathbf{x}_i \in {\mathbf{x}_1 \dots \mathbf{x}_N}$ the set of objects with *p* attributes
- $\omega_k \in \Omega = \{\omega_1 \dots \omega_c\}$ the set of clusters



Clustering algorithm

Determine groups of N objects

- $\mathbf{x}_i \in {\{\mathbf{x}_1 \dots \mathbf{x}_N\}}$ the set of objects with *p* attributes
- $\omega_k \in \Omega = \{\omega_1 \dots \omega_c\}$ the set of clusters



Clustering methods

Group data objects into clusters based on a similarity notion

Problematic

No background knowledge

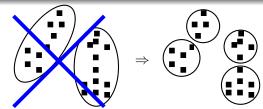
- How to define a similarity notion?
- How to detect the expected classification ?

Constrained Evidential Clustering

Constrained clustering

Incorporating constraints into a clustering method

- Model level
 - O balanced clusters
 - O negative information : one model rejected
- Cluster level
- Instance level



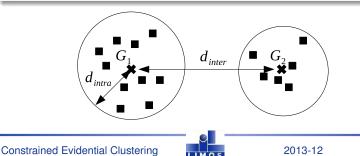
4/37

Introduction

Constrained clustering

Incorporating constraints into a clustering method

- Model level
 - O balanced clusters
 - O negative information : one model rejected
- Cluster level
- Instance level



Constrained clustering

Incorporating constraints into a clustering method

- Model level
 - O balanced clusters
 - O negative information : one model rejected
- Cluster level
- Instance level

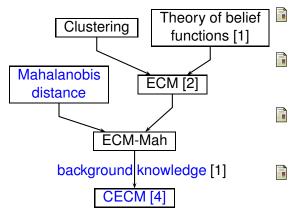
Must-Link

Cannot-Link

- *M* Must-Link set of constraints
- C Cannot-Link set of constraints

137-

Motivations



[1] P. Smets, *The transferable belief model for quantified belief representation*, 1998

[2] M.-H. Masson & al, *ECM :* An evidential version of the fuzzy c-means algorithm, 2008

- [3] K. Wagstaff & al, Constrained k-means clustering with background knowledge, 2001
- [4] V. Antoine & al, CECM : Constrained Evidential C-Means algorithm, 2012

Outline

Background

- O Theory of belief functions
- O FCM and ECM

Our contributions

- O Using an adaptive metric
- O Integrating constraints
- O Active learning

Experiments

Conclusion and Perspectives

Outline

Background

- O Theory of belief functions
- O FCM and ECM

• Our contributions

- O Using an adaptive metric
- O Integrating constraints
- O Active learning

Experiments

Conclusion and Perspectives

Mass Function

Let *Y* be a variable taking values in a finite set Ω .

Mass function
$$m: 2^{\Omega} \rightarrow [0, 1]$$
$$\sum_{A \subseteq \Omega} m(A) = 1$$

- m(A) : degree of belief specific to $Y \in A$
- If m(A) > 0 then A is a focal set

Derivative notions

Plausibility function

Potential degree of belief that could be given to A :

$$pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

$$(A \cup B_1 \subseteq A) \cup B_2 \cap A \cup B_2)$$

Making decision : the pignistic transformation

• Belief functions space \longrightarrow probability space

$$\textit{BetP}(\omega) = rac{1}{1-m(\emptyset)}\sum_{\{A\subseteq \Omega \mid \omega \in A\}}rac{m(A)}{|A|}$$

Constrained Evidential Clustering

Credal partition

Clustering framework

- $\Rightarrow \Omega$: set of clusters $\{\omega_1, \ldots, \omega_c\}$
- \Rightarrow Y : actual class of the object **x**_i
- \Rightarrow **m**_i : partial knowledge on the class of **x**_i
- \Rightarrow **M** = (**m**_{*i*}) : credal partition

Exemple

А	m_1	m_2	m_3	m_4
Ø	0	0	0	1
$\{\omega_1\}$	1	0.3	0	0
$\begin{array}{l} \{\omega_1\} \\ \{\omega_2\} \end{array}$	0	0.7	0	0
$\{\omega_1, \omega_2\}$	0	0	1	0

Evidential algorithms

- model with features : ECM
- relational model : EVCLUS, RECM

Fuzzy c-means (FCM)

Geometrical model

- Each object x_i has a degree of membership in each cluster k : u_{ik}
- Each cluster ω_k is represented by a center v_k
- Distance
 - O Euclidean $d_{ik}^2 = \|\mathbf{x}_i \mathbf{v}_k\|^2$
 - O Mahalanobis, Gustafson and Kessel method :

$$d_{ik}^2 = (\mathbf{x}_i - \mathbf{v}_k)^\top \Sigma_k (\mathbf{x}_i - \mathbf{v}_k)$$

Aternate optimization

$$opt(u_{ik})
ightarrow opt(\mathbf{v}_k)$$

Objective function

$$J_{FCM} = \sum_{i=1}^N \sum_{k=1}^C u_{ik}^eta d_{ik}^2$$

Subject to

$$\sum_{k=1}^{C} u_{ik} = 1 \text{ and } u_{ik} \ge 0 \quad \forall i, k$$

2013-12

...

12/37

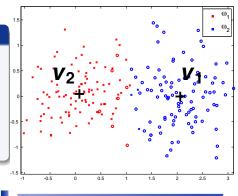
ECM

Principle

- Generalization of fuzzy *c*-means
- goal : enhance the concept of partition by using a credal partition

Geometrical model

- Each cluster ω_k is represented by a center v_k
- Centroid v
 _j: barycenter of centers associated to classes composing A_j ⊆ Ω
- Distance d_{ij}^2 between x_i and \overline{v}_j



...

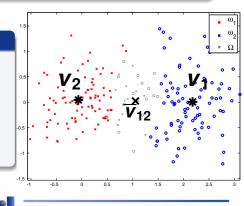
ECM

Principle

- Generalization of fuzzy *c*-means
- goal : enhance the concept of partition by using a credal partition

Geometrical model

- Each cluster ω_k is represented by a center v_k
- Centroid v
 _j: barycenter of centers associated to classes composing A_j ⊆ Ω
- Distance d_{ij}^2 between x_i and \overline{v}_j



2013-12

12/37

137-

ECM

Objective function

$$J_{ECM} = \sum_{i=1}^{N} \sum_{A_j \subseteq \Omega, \ A_j \neq \emptyset} |A_j|^{\alpha} m_i(A_j)^{\beta} d_{ij}^2 + \sum_{i=1}^{N} \delta^2 m_i(\emptyset)^{\beta}$$

subject to :
$$\begin{cases} \sum_{A_j \subseteq \Omega, \ A_j \neq \emptyset} m_i(A_j) + m_i(\emptyset) = 1\\ m_i(A_i) > 0 \quad \forall i, j \end{cases}$$

Optimisation

Minimize J_{ECM} w.r.t m_{ij} , \mathbf{v}_k \Rightarrow Use of the Lagrangian multipliers

Constrained Evidential Clustering

2013-12 13/37

Outline

Background

Theory of belief functions
 FCM and ECM

Our contributions

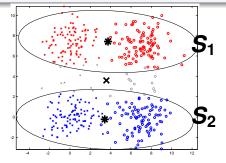
- O Using an adaptive metric
- O Integrating constraints
- O Active learning

• Experiments

Conclusion and Perspectives

Mahalanobis distance for each class ω_k

- Each cluster ω_k is represented by a center $\mathbf{v_k}$
- Each cluster ω_k has a covariance matrix $\mathbf{S}_{\mathbf{k}}$



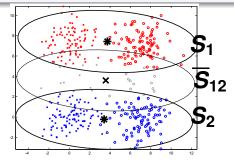
Definition

$$\begin{aligned} & d_{ij}^2 = (\mathbf{x}_i - \overline{\mathbf{v}}_j)^t \overline{\mathbf{S}}_j (\mathbf{x}_i - \overline{\mathbf{v}}_j) \\ & \text{such that} \\ & \overline{\mathbf{S}}_j = \frac{1}{|A_j|} \sum_{\omega_k \in A_j} \mathbf{S}_k, \\ & \forall A_j \subseteq \Omega, A_j \neq \emptyset \end{aligned}$$

2013-12

Mahalanobis distance for each class ω_k

- Each cluster ω_k is represented by a center $\mathbf{v_k}$
- Each cluster ω_k has a covariance matrix $\mathbf{S}_{\mathbf{k}}$



Definition

$$\begin{split} d_{ij}^2 &= (\mathbf{x}_i - \overline{\mathbf{v}}_j)^t \overline{\mathbf{S}}_j (\mathbf{x}_i - \overline{\mathbf{v}}_j) \\ \text{such that} \\ \overline{\mathbf{S}}_j &= \frac{1}{|A_j|} \sum_{\omega_k \in A_j} \mathbf{S}_k, \\ \forall A_j \subseteq \Omega, A_j \neq \emptyset \end{split}$$

2013-12

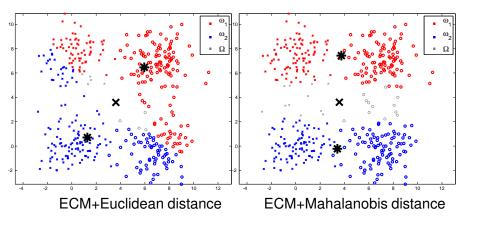
New Objective function

Minimize J_{ECM} w.r.t m_{ij} , \mathbf{v}_k , \mathbf{S}_k s.t. $|\mathbf{S}_k| = 1$ $\forall k = 1, C$

Optimisation

Kuhn–Tucker conditions give :

- $m_i(A_j)$ identical to ECM with a Euclidean distance
- \mathbf{v}_k : system of linear equations
- S_k : similar to Gustafson et Kessel



Constrained Evidential Clustering

2013-12

17/37

Formalization

• Joint class membership for $\mathbf{x}_i, \mathbf{x}_j$

 $m_{i imes j}(A imes B) = m_i(A)m_j(B) \quad \forall A, B \subseteq \Omega, A \neq \emptyset, B \neq \emptyset$

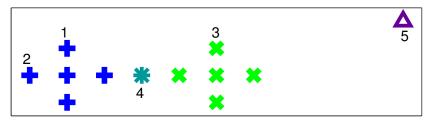
In Ω², two events O θ ⇒ "x_i and x_j belong to the same class" O θ → "x_i and x_j do not belong to the same class"

⇒ Plausibility to belong to the same class $pl_{i \times j}(\theta) = \sum_{A \cap B \neq \emptyset} m_i(A) m_j(B)$

⇒ Plausibility to belong to a different class $pl_{i\times j}(\overline{\theta}) = 1 - m_{i\times j}(\emptyset) - \sum_{k=1...c} m_i(\{\omega_k\})m_j(\{\omega_k\})$

Example

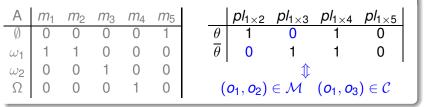
Α	m_1	m_2	m_3	m_4	m_5		$pl_{1\times 2}$	$pl_{1 \times 3}$	$pl_{1\times 4}$	$pl_{1 \times 5}$	
		0					1		1	0	.
ω_1	1	1	0	0	0	$\overline{\theta}$	0	1	1	0	
	0	0	1	0	0						- 1
Ω	0	0	0	1	0						

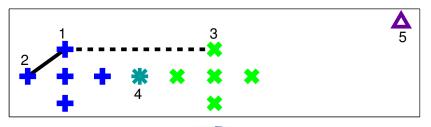


2013-12

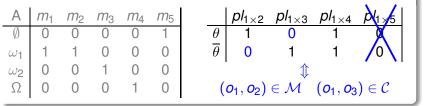
٩.

Example





Example





Constrained Evidential Clustering

Evidential clustering with constraints : CECM

Basic idea

If
$$(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M} \Rightarrow pl_{i \times j}(\overline{\theta})$$
 low and if $(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C} \Rightarrow pl_{i \times j}(\theta)$ low

Objective function

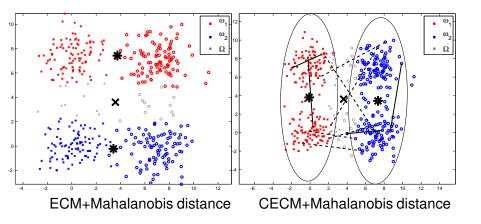
$$J_{CECM} = (1 - \varphi) \left(\sum_{i=1}^{N} \sum_{\substack{A_j \subseteq \Omega, \ A_j \neq \emptyset}} |A_j|^{\alpha} m_i(A_j)^{\beta} d_{ij}^2 + \sum_{i=1}^{N} \delta^2 m_i(\emptyset)^{\beta} \right) \\ + \varphi \left(\sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{M}} p_{l_i \times j}(\overline{\theta}) + \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{C}} p_{l_i \times j}(\theta) \right)$$

subject to
$$\sum m_i(A_j) + m_i(\emptyset) = 1$$
 and $m_i(A_j) \ge 0 \quad \forall i, j$

 \Rightarrow *J*_{CECM} quadratic when β = 2, constraints are linear

Constrained Evidential Clustering

Evidential clustering with constraints : CECM



Constrained Evidential Clustering

Problematic

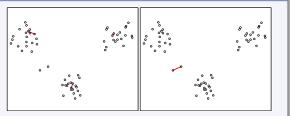
How to retrieve a constraints set?

- Background knowledge
 - ⇒ wide number of constraints, not necessarely interesting ones

Expert

 \Rightarrow time consuming

Uninformative constraints



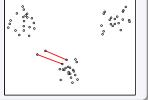


image provided by Prof. Adamsbaum (AP-HP hospital, Paris) and Prof. Bloch (ENST, Paris)

Constrained Evidential Clustering

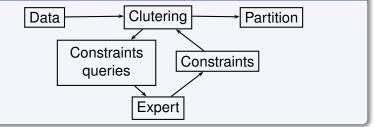
Active learning

Automatic and smart selection of constraints

Goal :

- acquire a few number of constraints at low cost
- greatly improve the clustering result

Global scheme

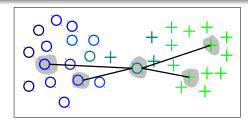


LIMOS

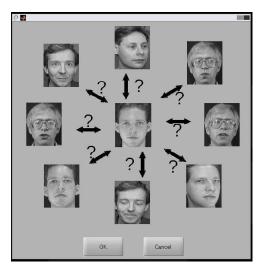
Active learning

Proposed method

- 1. Select an object classified with uncertainty
- 2. Select one or several objects classified with certainty
- 3. Ask the link to an expert

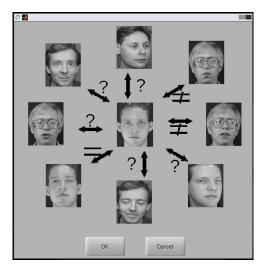


Active learning : possible application



Constrained Evidential Clustering

Active learning : possible application



Constrained Evidential Clustering

Outline

Background

- O Theory of belief functions
- O FCM and ECM

• Our contributions

- O Using an adaptive metric
- O Integrating constraints
- O Active learning

Experiments

Conclusion and Perspectives

2013-12

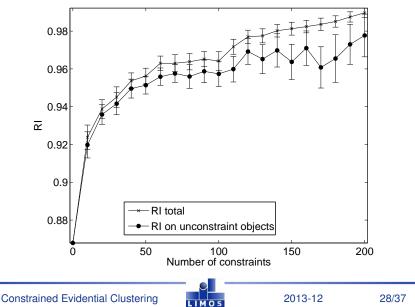
Experiments

Datasets						
		# attributes	# objects	# classes		
	Iris	4	150	3		
	LettersIJL	16	227	3		

Evaluation method

- Random constraints selection : based on the true known classes
- Decision : Maximum of pignistic probability
 - Criterion : Rand Index

Behavior of CECM on Iris dataset



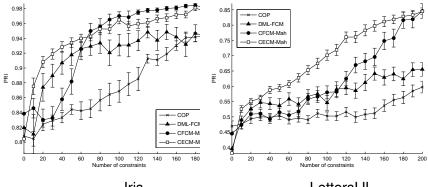
Comparison with other algorithms

	Clustering	Constraints	Distance
	base	respected	modification
COP [1]	k-Means	Yes	
DML-FCM [2]	k-Means	/	Х
CFCM [3]	FCM	/	Х
CECM	ECM	/	X

- [1] K. Wagstaff & al, *Constrained k-means clustering with background knowledge*, KDID, 2001
- [2] E. Xing & al, Distance Metric Learning with application to clustering with side-information, 2002
- [3] N. Grira & al, *Active semi-supervised fuzzy clustering*, Pattern Recognition, 2008

Constrained Evidential Clustering

Comparison with other algorithms

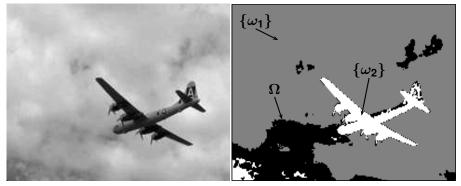


Iris

LettersIJL

2013-12

Plane image



Original image

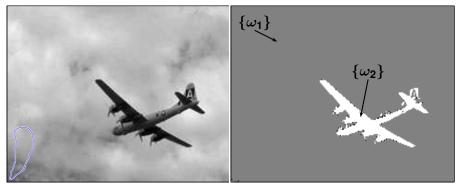
ECM+Euclidean distance

Constrained Evidential Clustering

2013-12

31/37

Plane image



constraints selection

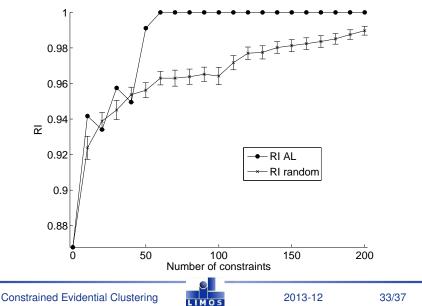
CECM+Mahalanobis distance

Constrained Evidential Clustering

2013-12

32/37

Active learning on CECM for Iris dataset



Outline

Background

- O Theory of belief functions
- O FCM and ECM

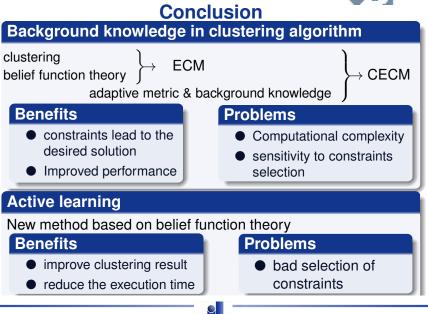
• Our contributions

- O Using an adaptive metric
- O Integrating constraints
- O Active learning

Experiments

Conclusion and Perspectives

2013-12



Constrained Evidential Clustering

2013-12

35/37

Perspectives

Evidential clustering

- Iower the computational complexity of ECM
 - ightarrow decrease the number of existing subsets
- improve the use of a Mahalanobis distance in ECM
 - $\rightarrow~$ new computation of the centers

Constrained clustering

- new constrained clustering methods
- studying active learning methods
 - \rightarrow guideline
 - \rightarrow new measures of utility for constraints
 - \rightarrow new algorithms

Thank you for your attention

2013-12

