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A B S T R A C T

Sickness behaviour is characterised by a lethargic state during which the animal reduces its activity, sleeps more
and at times when normally awake, reduces its feed and water intake, and interacts less with its environment.
Subtle modifications in behaviour can materialise just before clinical signs of a disease. Recent sensor devel-
opments enable continuous monitoring of animal behaviour, but the shift to abnormal animal activity remains
difficult to detect. We explored the use of Machine Learning (ML) to detect abnormal behaviour from continuous
monitoring. We submitted 14 cows (Bos taurus) to Sub-Acute Ruminal Acidosis (SARA), a disease known to
induce changes in behaviour. Another 14 control cows were not submitted to SARA. We used a ruminal bolus to
monitor pH and detect when a cow experienced SARA. We used a positioning system to infer an animal’s activity
based on its position in relation to specific elements in the barn (feeder, resting area, and alleys). We tested
several ML algorithms: K Nearest Neighbours for Regression (KNNR); Decision Tree for Regression (DTR);
MultiLayer Perceptron (MLP); Long Short-Term Memory (LSTM); and an algorithm where activity is assumed to
be similar from one day to the next. First, we developed ML models to predict activity on a given day from the
previous 24 h, considering all cows together. Then, we calculated the error between observed and predicted
values for a given cow. Finally, we compared the error to a threshold chosen to optimise the distinction between
normal and abnormal values. KNNR performed best, detecting 83% of SARA cases (true-positives), but it also
produced 66% of false-positives, which limits its use in practice. In conclusion, ML can help detect anomalies in
behaviour. Further improvements could probably be obtained by applying ML on very large datasets at animal
rather than group level.

1. Introduction

When animals get infected, it can cause a range of behavioural
modifications leading to a lethargic state during which the animal re-
duces its activity, sleeps more and at times when it is normally awake,
reduces its feed and water intake, and interacts less with conspecifics or
with humans (Hart, 1988; Dantzer & Kelley, 2007; Byrd & Lay, 2018).
This sickness behaviour is observed in many species, including humans.
It is induced by cytokines released at the onset of infection that act on
the brain. Sickness behaviour is thought to reduce energy expenditure
to sustain the high metabolic cost of the fever response and thus fa-
cilitate recovery from infection (Hart, 1988; Dantzer & Kelley, 2007).
Alternatively, sickness behaviour could help reduce the spread of dis-
eases among groups of animals (Shakhar & Shakhar, 2015), but this
hypothesis has not yet been confirmed (Lopes et al., 2018).

Sickness behaviour can start before actual clinical symptoms of
disease. For instance, cows are less reactive to their environment and
change activity less often a few hours before fever due to Escherichia
coli-induced mastitis (De Boyer Des Roches et al., 2017). In addition,
the circadian rhythm of cattle activity can be less marked from as early
as two days before clinical symptoms are detected by caretakers
(Veissier et al., 1989b; Veissier et al., 2017). There is therefore scope to
use such behaviours as early signs of a disease in order to detect and
remedy health disorders very early on, and thus reduce medicine in-
takes and improve animal welfare.

Up to recently, it was difficult to routinely detect such behavioural
changes because they require long periods of closely observing the
animals. Today, there are readily-available sensors and Precision
Livestock Farming (PLF) tools that offer the possibility to continuously
monitor animal behaviour. Accelerometers can record gross activities
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such as walking, eating, lying down, positioning systems can connect an
animal positions to specific resources and thus infer its putative ac-
tivity, and image analysis can provide further input (González et al.,
2015; Andriamandroso et al., 2017; Barwick et al., 2018). As argued by
Dawkins et al. (2012), the issue is not about collecting data but how to
process it. More specifically, to detect early signs of diseases through
behavioural modifications, we need to be able to predict normal be-
haviour and to estimate deviations from this norm. Modelling beha-
viour should be of great help for this purpose.

Machine Learning (ML) can greatly help the study of behaviour
(Valletta et al., 2017). ML consists in learning a model that corresponds
to the performance of the data with no a priori hypotheses. The model
can then help to classify data into groups according to a given criterion.
Examples of the use of ML in behavioural studies include tracking mice
to analyse their social behaviour, assigning eggs to individual female
pheasants in mixed clutches, identifying social networks in jackdaws,
counting wildebeest from aerial photos, or detecting oestrus from va-
ginal temperature and conductivity (Hong et al., 2015; Valletta et al.,
2017; Higaki et al., 2018). So far, to our knowledge, ML has not been
used to predict future behaviour.

Here we explored ML to predict cow behaviours in order to detect
anomalies potentially reflecting a health disorder. We used a Real-Time
Locating System (RTLS) to continuously record the position of cows in a
barn. As the various in-barn activities of a cow are associated with in-
barn locations, we inferred the activity of each cow according to its
position in relation to resources such as feeders and the resting area. We
submitted cows to a Sub-Acute Ruminal Acidosis (SARA) as a model of
a disease that induces behavioural changes (Commun et al., 2012;
Silberberg et al., 2017). We analysed the activity as a time series and
predicted behaviour from one day to the next. A deviation from the
prediction reveals abnormal behaviour, and could thus signal a health
disorder.

2. Materials and methods

2.1. Ethical note

The experiment was conducted at the INRAE ‘Herbipôle’ experi-
mental facility (https://doi.org/10.15454/1.5572318050509348E12,
UE 1414, Marcenat, France), which has French Ministry of Agriculture
approval to carry out experiments on live animals (EEA accreditation
#C15-114-01). All scientists and technicians involved in the experiment
have received initial training for experiments on live animals and are
regularly retrained to maintain and refresh their capacities, in line with
French regulations governing experiments on animals. The protocol
was submitted to and approved by the regional ethics committee (ap-
proval: APAFIS366). All these measures are aligned with the framework
of the EU Directive 2010/63 for the protection of animals used for
scientific purposes. In addition, cow health was checked closely every
day by caretakers using direct observations and data from sensors (see
below).

2.2. Animals and husbandry

A total of 28 Holstein-breed dairy cows aged 3–7 years were mon-
itored for 9 weeks from 3 months after the start of lactation. The cows
were housed in a 11.7 × 21.4 m pen equipped with as many feeding
places and resting cubicles as cows (Fig. 1B). They were fed forage (hay
and wrapped hay) and starch-containing concentrates. The cows were
divided into two treatments (n = 14 in each treatment). In the first
treatment (controls), the cows were fed a diet with 75% forage and 25%
concentrates (corresponding to 10.5% starch in the diet) during the
entire observation period. In the second treatment, after 4 weeks of
control diet, the proportion of concentrates was progressively increased
to reach 46% in 10 days (31.5% starch) and the cows were maintained
on this diet for 2 weeks before resuming the control diet for 3 weeks.

Table 1 summarises the characteristics of the two diets. This treatment
was designed to induce a SARA, which is characterised by a low pH in
the rumen (Villot et al., 2018).

2.3. Observation

Cow activities were captured and collected using an RTLS system
(CowView, GEA Farm Technologies, Bönen, Germany). The system
consists of a locating sensor fixed on top of each cow collar that emits a
signal in the ultra-wideband area that is captured by antennas fixed in
the barn ceiling (Fig. 1). The position of the cow is determined by tri-
angulation every second. If the cow is found in a cubicle, she is con-
sidered to be resting, if she is found near a trough, she is considered to
be eating, and if she is found in the alley, she is considered to be
walking (if she is moving) or standing (if not moving). For the purposes
of this experiment, we merged walking with standing, as direct ob-
servations proved that the device did not precisely distinguish these two
activities.

As in Veissier et al. (2017), we performed a factorial correspondence
analysis with hours of the day as observations and proportion of cows in
each activity as variables. We used the weights of activities on the first
component to build a new summary variable called activity level. These
weights are: −0.34 for resting, +0.29 for being in alleys, and +0.52
for eating. A high value obtained for a cow at a given time (i.e. a
specific hour on a specific day) means that she is fairly active; a low
value means she is fairly inactive. We then exploited the time series
composed of the activity level of each cow per hour. Fig. 2 provides an
example of variations in activity level during a day.

We monitored the ruminal pH of each cow every 15 min during the
entire experiment using a specific pH sensor in the cow rumen (Farm
bolus; eCow, Exeter, UK). Following the method proposed by Villot
et al. (2018), we normalised the ruminal pH values of each cow to take
into account inter-individual variability, sensor drift and sensor noise.
We considered that a cow was under SARA when the time she spent
with a normalised ruminal pH (NpH) decreased by at least 0.3 for more
than 50 min/d and the daily standard deviation in NpH was above 0.2
or the daily NpH range was above 0.8.

Every day, the caretakers observed the cows and noted any apparent
disorders (lameness, low ingestion, diarrhoea, respiratory disorder,
colic, injury, isolation, apathy, and oestrus) as well as any potential
disturbances in the barn due to e.g. electric failure or a fire alarm.

2.4. Machine learning

The data we used are time series as the values correlate with time.
Following a classification approach, a ML model can be built to classify
the data from a time series into normal vs. abnormal. For instance,
Rajpurkar et al. (2017) used a neural network to classify electro-
cardiograms into normal heart activity vs. several types of arrhythmia.
Using this approach assumes that the patterns of all possible anomalies
are known. This was not the case in our study: although cows’ activity
follows a circadian rhythm as in other animals (Buijs et al., 2016), each
cow has its own rhythm of activity during the day and may react dif-
ferently to a particular disorder. This implies that we cannot detect a
specific pattern of anomaly among the time series. However, we can
attempt to predict future values of the series and detect the anomalies
by comparing the observed values against predicted values. Such an
approach was proposed by Malhotra et al. (2015), then applied by
Chauhan and Vig (2015) to detect anomalies in electrocardiograms. The
framework proposed by Malhotra et al. (2015) is organized in three
steps: (1) ML prediction, (2) Prediction error computing, and (3) Sta-
tistical analysis (Fig. 3). In Step 1, the ML algorithm predicts the future
values of a given time-window. In Step 2, the error between predicted
and observed values is calculated. If there is no anomaly in the window,
the system is able to accurately predict the future values. In Step 3, the
error between predicted and observed values is compared to a given
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threshold, chosen to optimise the distinction between normal and ab-
normal values. An anomaly is detected in the time window if the error is
statistically higher than the threshold. We applied this framework to
detect anomalies in cow activity.

Here, we used 24-h time-windows, because the circadian rhythm is
a strong determinant of activity (Buijs et al., 2016). We thus considered
24 h of activity represented by the vector:

�= < ⋯ > ∈x x x x, , ,1 24
24

and predicted the activity of the future hours as:

�= < ⋯ > ∈
+

y x x x y, , , ,p p p
l

p p l
25 26 24

where:
⋯x x, ,1 24 is the activity level of a cow over the 24 h of a given day

⋯
+

x x x, , ,p p
l

p
25 26 24 is the activity level predicted for the next day

l is the number of future hours for which cow activity is predicted
(from 1 to 12 in our study).

We used the same 24-h sample to train the models whatever the
number of hours to be predicted, taking into account only the maximum
number of hours to be predicted (here 12, so the sample includes a time
windows of 24 observed +12 h predicted). The sample available from
the dataset gets smaller with increasing number of hours to be pre-
dicted. Beyond 12 h to be predicted, the models were unstable and the
quality of the results decreased. We thus decided to limit the prediction
to 12 h from the previous 24 h. Using floating 24-h time-windows, we
were nevertheless able to predict 24 h of activity.

In Step 1 of the framework borrowed from Malhotra et al. (2015),
we tested several widely-used ML algorithms to predict the activity of
the future hours (yp):

• K Nearest Neighbours for Regression (KNNR), which is a lazy al-
gorithm that gives a prediction based on the average of the k nearest
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Fig. 1. RTLS-enabled detection of the cow position in the barn. Fig. 1A, RTLS sensor on top of the cow collar; Fig. 1B, layout of the barn.

Table 1
Diets provided to the cows.

Item Control SARA inducing diet

Forage / concentrate ratio 75 / 25 54 / 46
Ingredients (% dry matter)
Hay 19 14
Wrapped hay 56 40
Concentrates for production 25 0
Cereal concentrates1 0 46

Chemical composition of diet (g/100 g dry matter)
Organic matter 93.3 94.7
Starch 10.5 39.4
Fibers (cellulose, lignin, …)2 52.1 21.6
Crude protein 17.4 14.2

1 Barley, corn, and wheat mix.
2 Neutral Detergent Fibers.

Fig. 2. Changes in activity level of an individual cow during one day (Cow 2008605 from the control group, on March 2, 2015).
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observations from the dataset (Cover & Hart, 1967). To do so, we
screened the dataset to find the k 24 consecutive hours with the
minimum Euclidian distance from the observed vector x. We tested
k = 1, 10 and 20;

• Decision Tree for Regression (DTR), which takes a decision (the
prediction) from a particular structure called a decision tree
(Quinlan, 1986). Each node of the tree corresponds to a rule, i.e. a
condition test on the data. Each possible result of that test leads to a
branch, then possibly to a new node with a new rule. The algorithm
starts by the first node of the tree, called root, then follows a path
through all branches and finishes by a leaf that gives the best pre-
diction;

• MultiLayer Perceptron (MLP), which is a basic neural network ar-
chitecture (Rumelhart et al., 1986) composed of artificial neurons
organized in layers. Each neuron from a layer is connected to all
neurons from the following layer. A connection consists of a signal
that is transmitted from one neuron to another, like synapses in the
brain. A neuron collects all signals from the previous layer and ap-
plies a non-linear function, the result of which is sent to the fol-
lowing neurons.

• Long Short-Term Memory (LSTM), which is a neural network ar-
chitecture designed for time series (Hochreiter & Schmidhuber,
1997) that takes into account former values in the series. It is the
original algorithm used by Malhotra et al. (2015);

• H-24, which is a homemade basic algorithm assuming a stable
rhythm on consecutive days h, that is the activity on Hour 25 equals
that on Hour 1, that activity on Hour 26 equals that on Hour 2, etc.

In Step 2, we calculated error vectors. For each 24-h time-window x,
we have l ( ∈l [1, 12]) predicted values and l observed values (vectors
yp and y )o . For error computing, we calculated the prediction error
vector:

�

= − = < − − ⋯ − >

∈

+ +
e y y x x x x x x
with e

, , ,p o p p
l

p
l

l
25 25 26 26 24 24

For the statistical analysis in step 3, we assumed that all computed
error vectors follow a multivariate normal distribution N μ( , Σ), with

=μ [0]l and Σ is the covariance matrix computed by the maximum
likelihood estimation method.

A threshold τ was calculated to define a limit of acceptance, i.e. to
distinguish a normal vs. abnormal activity. It was computed in a way to
maximise the difference between True Positive Rate (TPR, see below)
and the False Positive Rate (FPR, see below). If the density of an error
vector was below the threshold, we classified the corresponding 24-h
time-window as normal. If the error vector density was above the
threshold, we considered the corresponding 24-hour time-window as
abnormal.

2.5. Dataset

We split our dataset into normal vs. abnormal cow*days. To extract

the normal cow*days, we removed the cow*days when a disorder was
detected on a cow by the caretakers or via the ruminal pH sensor and
the days when a disturbance was recorded affecting the whole barn
(e.g. an electricity failure or fire alarm). We also removed two cow*-
days before a disorder was detected on a cow and seven days after in
order to avoid pre-clinical states or the disorder recovery phase. To
extract the abnormal cow*days due to SARA, we kept the cow*days on
which cows were detected under SARA due to abnormal ruminal pH
and the following cow*day, based on the fact that ruminal pH corre-
lates with behavioural symptoms of SARA, i.e. an animal is sick when
pH goes down and recovers quickly when pH resumes normal values
(Villot et al., 2018). As this study is focused on SARA, we did not use the
remaining cow*days, which were days when a disturbance occurred in
the barn or days considered abnormal due to another cow disorder
(disease or oestrus). We obtained 196 normal cow*days and 265
cow*days when cows were under SARA.

Then we used:

– 70% of the normal cow*days to build the ML models to learn the
normal patterns of a cow activity. Algorithms based on a neural
network architecture (MLP and LSTM) need to separate training and
validation, so we used 80% of the sub-dataset for training and 20%
for validation;

– 10% of the normal cow*days and 50% of the SARA cow*days to find
the parameters of the multivariate Gaussian error distribution and
optimise the threshold τ to distinguish normal vs. abnormal days.
We used different percentages for normal and SARA cow*days to
obtain a similar number of days in the two conditions;

– 20% of the normal cow*days and 50% of the SARA cow*days to
compare the performances of the ML models.

All normal and SARA cow*days were chosen at random from the
initial dataset.

2.6. Training and comparison of ML models

The training of a MLP and LSTM models is stochastic, i.e. each ex-
ecution of the training process can bring a different result. We trained
the models 10 times to cover for variations in models produced by each
training. The results given in this paper are the average of the results
from the 10 executions.

We calculated the TPR and FPR obtained with each ML model, with:

– TPR, the proportion of 24-h time-windows labelled as abnormal
and detected as abnormal in all 24-h time-windows labelled as ab-
normal,

– FPR, the proportion of 24-h time-windows labelled as normal and
detected as abnormal in all 24-h time-windows labelled as normal.

We also recorded the time needed to perform all three steps of the
Malhotra method and the time needed to detect anomalies for each ML

Fig. 3. Framework developed by Malhotra et al. (2015) to detect anomalies in time series.
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model.

3. Results

Table 2 gives the TPR and FPR to detect behavioural anomalies due
to SARA for all algorithms tested and the number of hours for which we
predict cow activity.

The performances of the algorithms tested for detecting SARA
ranged from 0.11 to 0.83 in terms of TPR and from 0.75 to 0.08 in terms
of FPR. We obtained the highest TPR with the KNNR1 algorithm and
the prediction of 12 h of cow activity. In general, FPR increased with
TPR, so that the difference between TPR and FPR remained low. KNNR
algorithms yielded the largest difference between TPR and FPR: 0.18
for KNNR20 with 7–10 h predicted. KNNR1 with 12 h prediction pro-
duced the best compromise between a high TPR and a large difference
between TPR and FPR (TPR, 0.83; TPR – FPR, 0.17).

We obtained the lowest performances with the H-24 and DTR al-
gorithms. Both these algorithms had very similar TPR and FPR values.
The algorithms based on a neural network architecture (MLP and
LSTM) provided intermediate results: the TPR reached values slightly
lower than with the KNNR algorithms but the difference between TPR
and FPR was lower than with KNNR algorithms (largest difference was
0.15 for MLP with 7 h predicted and 0.11 for LSTM with 5 or 6 h
predicted).

The KNNR models were fairly quick to build (between 51 and 84 s)
and the detection time was 35 s for KNNR1 and KNNR10 and 39 s for
KNNR20, whatever the number of hours predicted. The other algo-
rithms took a bit less time to be built (36–51 s) and the detection took
only 1 s (Table 3).

4. Discussion

The main findings of this study are that the activity rhythm of a cow
varies from one day to another, but it is nevertheless possible to predict
series of 24 h of activity and detect significant variations (anomalies) in
them using ML. Depending on the algorithm used, these anomalies
coincide more or less with the occurrence of a disease (here, SARA).

We obtained the best results with the KNN1 algorithm that predicts
individual cow activity based on the closest (i.e. most similar) ob-
servations from the initial dataset, and with 12 h of prediction: 83%
cases of SARA were detected. In this study, the gold standard for de-
tecting SARA was ruminal pH. However, not all cows suffer from a low
ruminal pH. When sheep are submitted to short but repeated episodes
of SARA, they change their behaviour on the first occurrence of SARA
(they are more agitated and more aggressive to each other) but these

reactions fade thereafter (Commun et al., 2012). The 17% of SARA
cases that we did not detect through abnormal behaviour may corre-
spond to cows undergoing SARA without showing signs of suffering
from it.

At the same time, with the KNN1 algorithm and 12 h of prediction,
66% of the normal cow*days were also detected as abnormal, giving a
TPR-to-FPR difference of only 0.17. The other algorithms tested did not
provide better results in terms of FPR or TPR-to-FPR difference. We thus
conclude that even though the method is fairly sensitive, it still lacks
specificity, which limits its practicability for helping farmers detect
animals that need attention, as farmers may give up responding to alerts
provided by the system due to too many false-positives.

The lack of specificity may come from the fact that the rhythm of
activity is highly variable from one day to another, making it difficult to
identify an abnormal rhythm among variations of the rhythm. Indeed,
we obtained the worst performances with an algorithm that assumes a
stable rhythm from one day to another (named H-24). More recent
methods of ML, such as Residual Networks used by Yadav and Bist to
identify flies activity (2019) should be investigated to try to improve
the specificity of our detection. Furthermore, we applied the various ML
algorithms to describe rhythm of activity at group level, i.e. where the
rhythm considered as normal is the same for all cows. By contrast, each
cow may have its own rhythm of activity. Building models at individual
level could probably increase the precision in the distinction between
normal vs. abnormal activity, but would require larger datasets. Here
we observed 28 cows for 9 weeks, whereas to obtain the same precision
in results at cow level, we would need 28*9 weeks, i.e. nearly 5 years of
observations, before being able to detect anomalies in the next years,
which is clearly not compatible with the objective of routinely detecting
diseases in a herd.

Cattle behaviour generally follows a well-marked circadian rhythm
(Veissier et al., 1989a; Veissier et al., 2001; Nikkhah, 2014). Cattle are
generally active during the day and rest at night. In addition, when kept
indoors, dairy cattle display peaks of activity at the time food is de-
livered and around milking. Here we considered 24-h time-windows
but we did not look at specific periodic components of the circadian
rhythm. Extracting such components could improve the accuracy of the
modelling of the 24 h time-windows and may allow models to be built
at animal level rather than group level.

This study used SARA, a metabolic disease, as disease model. SARA
may not affect animal behaviour as much as other diseases that induce
inflammation, fever, or pain (e.g. in cattle, Borderas et al., 2009; De
Boyer Des Roches et al., 2017). Further exploration of behavioural
changes under such diseases is necessary in order to make further
progress in using ML to detect sickness behaviour early. This would

Table 2
Performances of the algorithms tested. The algorithms were: K-Nearest Neighbours for Regression (KNNR) applied to 1, 10 and 20 neighbours; Decision Tree for
Regression (DTR); MultiLayer Perceptron (MLP); Long Short-Term Memory (LSTM); and an algorithm called H-24 where activity is assumed similar to the day before.
For each algorithm, the activity of the cows was predicted from 1 to 12 h. Performances are expressed as True Positive Rate (TPR) and False Positive Rate (FPR).

l1 1 2 3 4 5 6 7 8 9 10 11 12

Algorithm
KNNR1 TPR 0.59 0.51 0.52 0.57 0.57 0.57 0.65 0.68 0.66 0.52 0.66 0.83

FPR 0.58 0.50 0.49 0.52 0.49 0.46 0.51 0.53 0.51 0.40 0.50 0.66
KNNR10 TPR 0.45 0.45 0.49 0.56 0.54 0.61 0.71 0.70 0.70 0.64 0.60 0.50

FPR 0.46 0.46 0.46 0.50 0.45 0.48 0.55 0.53 0.53 0.47 0.47 0.45
KNNR20 TPR 0.50 0.62 0.42 0.52 0.56 0.58 0.65 0.63 0.61 0.57 0.41 0.25

FPR 0.51 0.63 0.39 0.45 0.48 0.46 0.47 0.44 0.44 0.39 0.29 0.21
DTR TPR 0.41 0.10 0.70 0.30 0.24 0.35 0.20 0.25 0.30 0.34 0.11 0.24

FPR 0.42 0.11 0.71 0.31 0.23 0.32 0.17 0.23 0.27 0.30 0.10 0.26
MLP TPR 0.51 0.68 0.59 0.55 0.65 0.63 0.63 0.50 0.55 0.41 0.34 0.16

FPR 0.49 0.66 0.53 0.44 0.51 0.49 0.48 0.37 0.42 0.31 0.27 0.16
LSTM TPR 0.21 0.24 0.24 0.32 0.35 0.33 0.28 0.35 0.33 0.26 0.14 0.78

FPR 0.21 0.22 0.23 0.28 0.24 0.23 0.22 0.30 0.26 0.19 0.08 0.72
H-24 TPR 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.62 0.60 0.48 0.48 0.48

FPR 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.61 0.58 0.46 0.46 0.46

1 Number of hours for which we predict the cows’ activity.
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necessitate inducing either an infectious disease or at least inflamma-
tion via e.g. LPS injection, or monitoring all diseases occurring spon-
taneously in a herd over a large period.

Finally, the time needed to build the models was fairly quick, with
the longest being 84 s for KNNR with 1 neighbour and 12 h of pre-
diction. Detection was also quick, at 35–39 s for KNNR and just 1 s for
the other algorithms. These times are compatible with a use of ML in
real-farm practice, allowing fast detection of anomalies. However, the
sample used in our study was relatively small (28 cows). The time to
build the models may be far longer in large herds when a KNNR algo-
rithm is used, because for each 24-h window analysed, the algorithm
has to look for the nearest neighbour among all data. The practicality of
KNNR algorithms thus needs checking on large herds.

In conclusion, Machine Learning helps analyse the activity rhythm
of animals. It is possible to detect anomalies in the activity rhythm that
are possibly related to health disorders (in our study, an experimen-
tally-induced episode of SARA). However, the current method lacks
specificity for detecting health disorders. Investigations should be
pursued on larger datasets, possibly from routine observation of dis-
eases and other artefacts in the animal’s life, with modelling applied at
animal level and taking into account the circadian nature of the activity
rhythm.
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