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Abstract

Clustering is a data analysis method that creates groups of objects according to
a similarity notion. Amongst the existing clustering algorithms, the possibilistic
fuzzy c-means (PFCM) is a well-known algorithm since it generates a possibilis-
tic partition. Such possibilistic partition is helpful in the presence of a noisy
environment and allows to express various types of uncertainty and imprecision.
In recent years, the performance of clustering methods has been improved by
incorporating partial information. The approach, called semi-supervised clus-
tering, introduces instance-level information such as labeled patterns in the clus-
tering process. In this work, we propose to extend PFCM to combine labeled
patterns with the possibilistic framework. To provide more flexibility to the new
method, in addition to the Euclidean distance, an adaptive distance measure is
considered. Experimental results show the interest of our new semi-supervised
possibilistic fuzzy c-means algorithm on various data sets.

Keywords: Partially supervised clustering, possibility, labeled patterns,
Mahalanobis distance

1. Introduction

Clustering is a research field of data mining considered as an essential tool
to analyze data. It aims at grouping objects into clusters following a similarity
notion. There exist two families of clustering methods: the hierarchical and the
partition-based methods [1]. Partitional clustering methods can be divided into
distinct categories, ranging from crisp (hard) partitional clustering to various
types of soft partition-based methods such as fuzzy, possibilistic, etc.

A crisp partitional clustering algorithm organizes data into clusters by as-
signing each object unambiguously to a single cluster. A large number of clus-
tering methods generating crisp partition have been proposed over the last few
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decades. A complete review of these methods can be found in [2]. Among them,
the k-means algorithm has attracted a lot of attention since it is a simple and
fast optimization-based method. However, as any crisp partitional algorithm, it
does not allow to represent uncertainty in the case for instance of overlapping
clusters. Thus, variants of the k-means algorithm generating soft partitions
have been developed ever since.

The most known extensions of k-means are the fuzzy c-means (FCM) algo-
rithm [3] and its version with an adaptive distance called FCM-GK [4]. The
goal of an adaptive distance is to adjust a specific distance to a clustering prob-
lem. In FCM-GK, it corresponds to Mahalanobis distances where covariance
matrices are adjusted for each cluster. The FCM and FCM-GK methods, which
have been used in many applications [5, 6, 7, 8|, are based on the fuzzy sets
theory [9]. They produce a fuzzy partition that allows to express a degree of
uncertainty for the membership of each object to each cluster. More precisely,
an object has a probability to belong to a cluster and the sum of the proba-
bilities to each existing cluster is equal to 1. Thus, a fuzzy partition is also
referred to as a probabilistic partition. Although such partition provides richer
information than a crisp one, it does not allow to describe imprecision. Hence,
an object may be assigned to a cluster even if it is far from this cluster. This
can lead to anomalous clustering results. To overcome such weakness, the pos-
sibilistic c-mean (PCM) algorithm introduced in [10] relaxes the probabilistic
constraints of FCM to obtain a possibilistic partition. Similarly to k-means and
FCM, the PCM algorithm is based on an objective function minimized using
a heuristic method. However in PCM, the heuristic highly depends on initial
parameter settings and often generates coincident clusters [11]. To avoid such
shortcoming, several algorithms have been proposed [12, 13, 14, 15]. In [12], the
possibilistic partition obtained with the objective function of PCM is altered
in order to create a core for each cluster. Although the algorithm presents a
guideline for parameter settings and is robust to coincident clusters, it does not
follow a strict optimization. In [13], a repulsive term has been added in the PCM
objective function in order to force the separation of the clusters. Nonetheless,
this method, called RPCM, is sensitive to the parameter settings. In particular,
adjusting the weight given to the repulsive term is a complex task. Another way
to overcome the problem of coincident clusters is to linearly combine the objec-
tive function of FCM and PCM [14]. The algorithm, referred to as PFCM, is an
improved version of FPCM [16]. It corresponds to the most famous extension
of PCM since it obtains good results with reasonable settings.

It is well known that clustering is a complex task and an ill-defined problem.
The little information given to a clustering method is often not enough to obtain
a relevant solution. Nonetheless, in many domains where clustering methods
are applied, there exists some background information that can help to improve
the extracted knowledge from data analysis [17, 18, 19]. This has led to the
development of a new category of clustering algorithms that can be organized
in semi-supervised clustering and supervised clustering.

Supervised clustering has been defined as the problem of learning a dissim-
ilarity function from labeled data that will be used by a clustering algorithm



to partition unlabeled data [20, 21]. This problem has also been described as a
prediction problem in [22] similar to that of the classification problem. Thus,
supervised clustering aims at extracting the data structure using a two-stage
process: model parameter learning and cluster prediction for new unlabeled
data.

The essence of semi-supervised clustering methods is the same as for un-
supervised clustering methods: to extract the data structure directly from the
data set with no learning involved. These methods incorporate some a priori
information in the form of a few constraints or labels. Various types of a priori
information have been considered in the literature: pairwise constraints [23, 24],
labeled patterns [25, 26, 27], and others [28, 29]. Although semi-supervised
and supervised clustering seem closely related, the idea of transferring learned
knowledge to cluster new unlabeled data in supervised clustering leads to signif-
icantly different problem formulations and solutions. A complete discussion on
the differences between semi-supervised and supervised learning can be found
in [30, 31]. The focus of this work is on semi-supervised methods.

Semi-supervised clustering algorithms with labeled patterns, also referred
to as partially supervised clustering, have been mainly proposed when labeled
patterns are scarce, which is often the case in real applications. As shown in
Figure 1, the idea of clustering with partial supervision emerged in the mid-
80s. Clustering with partial supervision assumes that some labeled patterns are
available and can be used to improve clustering algorithms [32].

A well-known variant of k-means that provides a hard partition is SKMEANS
[26]. It uses hard labeled patterns and consequently, it is unable to model
uncertainty on the a priori knowledge. Without a doubt, the literature is rich
on fuzzy (soft) partition-based clustering methods: SFCM85 [32], SFCM97 [25],
SFCMO04 [33], 2kSFCM04 [34], SFCMO06a [27], SFCMO06b [35], ESFCMO09 [36],
SSFCMO09 [36], and SFCM-HPR13 [37]. Fuzzy partition-based methods define
degrees of probability on labels. Such soft labels have two advantages: they are
more abundant in real applications and an expert can decide to decrease the
probabilities when there exists noise in the labels, in order to maintain good
performances [38]. Since SFCM is an extension of FCM and both generate
fuzzy partitions, it is clear that the probabilistic framework used in SFCM fails
to represent imprecision.

Early partially supervised clustering algorithms capable of dealing with im-
precision are based on the possibilistic framework discussed in [10] and [13].
[39] extends RPCM [13] to take into account a priori knowledge or labeled pat-
terns in an algorithm called semi-supervised PCM (SPCM). SPCM modified
the objective function in [13] to maximize the distance between clusters while it
seeks to minimize the inverse of the distance. [39] uses a Euclidean distance and
solves the optimization problem using first-order necessary conditions. Thus,
since SPCM is an extension of RPCM, it faces the coincident cluster centroids
problem. Coincident cluster centroids are handled, during the optimization pro-
cess, by removing and re-initializing them at another location. This problem is
discussed in [40] and [41] where the convexity of the objective function of the
SRPCM algorithm is analyzed. A second-order condition optimization method
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Figure 1: Historical time line of semi-supervised clustering algorithms from 1985 to 2018.
Hybrid column refers to the algorithms that provide a possibilistic and probabilistic partition.

is used in [41] that guarantees the convergence of the solution and thus solves
the problem of coincident cluster centroids. [41] also introduces the idea of semi-
supervised possibilistic fuzzy c-means clustering SPFCM-eucl using Euclidean
distance. [42] and [43] present an extension to the PFCM algorithm by using
labeled centroids instead of labeled instances or samples. The two methods are
dedicated to image segmentation and take into account the neighborhood of
the pixels in the objective functions. In [44, 45] SECM, an extension of the
evidential c-means algorithm (ECM) [46] to take into account labeled patterns,
is presented. SECM allows the extraction of much richer partition information
at the price of a much higher computational complexity.

Most existing semi-supervised clustering algorithms have been developed
using a Euclidean distance which, in general, may not match the structure of
the data set to which they are applied to. Yet, using an adaptive distance
in the form of a Mahalanobis distance gives more flexibility to adjust a met-
ric for each cluster, and constraints or labels can help to guide the algorithm
towards more accurate metrics. Such adaptive distance has been introduced
in semi-supervised clustering algorithms with pairwise constraints [47, 48, 24]
and labeled patterns [27, 38]. These methods have shown improvement in the
clustering performances on data sets with clusters having non-spherical shapes.



Although there exist several semi-supervised clustering algorithms with an
adaptive distance, none ally the advantages of the possibilistic framework and
the use of an adaptive distance. In this work, a new algorithm called SPFCM-
mabh is presented. The new method is an extension PFCM [14] and SPFCM-eucl
[41]. Tt introduces the use of the Mahalanobis distance and incorporates a few
labeled patterns with a degree of possibility, it adjusts its proper metric, and
generates a possibilistic partition. Such possibilistic framework, which is richer
than hard and probabilistic framework, and such adaptive distance make it
possible to express labeled patterns in a more flexible way and to obtain more
precise solutions. We also present a complete analysis of the performance of
SPFCM-mabh.

The paper is organized as follows: first, section 2 reviews possibilistic clus-
tering algorithms related to this work. Next, section 3 presents the new semi-
supervised clustering algorithm with labeled patterns and an adaptive distance
in the form of Mahalanobis distances. This section describes how labeled pat-
terns are expressed and integrated into PFCM. Experimental settings and re-
sults are discussed in section 4. It includes an analysis of various parameters
and partially supervised clustering comparisons. Finally, conclusions and per-
spectives of our work are presented in the last section.

2. Preliminaries on soft partitional clustering

Given a collection of n objects represented by a set of feature vectors X =
{X1,...,Xp} € RP, k-means and its extensions are algorithms that search for
¢ clusters such that each cluster k is represented by a prototype (or centroid)
vk € RP. The matrix V = [v}] corresponds to the set of the ¢ centroids.

2.1. Fuzzy c-means

The fuzzy c-means algorithm is a method that generates a fuzzy partition,
which conveniently can be expressed as a matrix, U = [u;] such that a degree
of uncertainty wu;; is defined for the membership of each object ¢ to each cluster
k. The FCM algorithm aims at minimizing an objective function considered as
the weighted-within group sum of squared errors:

Trem(U, V) =Y " ulidy, (1)

i=1 k=1

subject to
> wi =1, Vi={1,...,n}, (2)
k=1

> ik >0, Vk={1,...,¢c}, (3)
=1

1>wu, >0, Vi={1,....n}, k={1,...,c}. (4)



The parameter m > 0, called fuzzifier and usually set between 1.5 and
3 [3], is an exponent controlling the fuzziness of the partition. The distance d;i,
represents the Euclidean distance of the object x; to the cluster k.

The minimization of FCM is carried out through an iterative optimization
until the convergence of the clustering solution. First, the fuzzy partition U is
fixed and Jpojps is minimized with the respect to the centroids V. Then V is
fixed and the partition U is updated. Estimations at a step of the algorithm
for the centroid vj such that k € {1,...,c} and the degree of membership wu,
of an object i € {1,...,n} in cluster k are given by:

w-(SE)7)
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2.2. Possibilistic c-means

The possibilistic c-means is, historically, the first method that proposes to
use the possibilistic framework to generate groups and deal with outliers [10]. It
produces a possibilistic partition T = [t;;] via the minimization of the following
objective function:

n c c n

Tpem(T,V) =3 N " thdi + Y ey (1—tu)", (7)
k=1 k=1

i=1 k= = =1

subject to

> tin >0, VE={1,...,¢c}, (8)
i=1
1>t >0, Vi={l,....n}, k={1,....c}. ()

The first term of Jpcas corresponds to the objective function of FCM. How-
ever, since PCM is relaxing the constraints (2), a second term has been inte-
grated in order to avoid the trivial solution consisting of a possibilistic partition
with only null values. The parameter n corresponds as m to a coefficient that
controls the fuzziness of the possibilistic partition. In [10], it is set to 2. The
parameters 7y, are positive coefficients that determine the area of influence of
the clusters. These fixed parameters can have a great impact on the clustering
results. The ~y;, parameters are usually computed as follows [10]:
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where U = [u;] is the probabilistic partition obtained by applying the FCM
algorithm and K, usually set to 1, is a weighting factor enabling to reduce or
increase the overall size of the clusters.

Finally, PCM follows the same iterative procedure as FCM in order to min-
imize its objective function. Performing the alternate optimization of T and V
until convergence of the solution leads to the subsequent updating equations:

—1

- (®T) w

n
N .
> thxi

vy, = = (12)

>t
k=1

Inversely to FCM, coefficients t;; are cluster-independent. As a result, cen-
troids become independent of each other and are free to move in the same dense
region. Such behavior, worsen by the centroids initialization, leads to a solution
with coincident clusters [11], although satisfying partitions should encompass ¢
distinct clusters. Several algorithms have been proposed to solve this well-known
issue of PCM. The algorithm described next is one of the most popular.

2.3. Possibilistic Fuzzy c-Means

The possibilistic fuzzy c-means algorithm solves the problem of coincident
clusters by combining possibility and probability membership values in its ob-
jective function [14]:

(&

JPFC’M U T, V = Z auf-'kf +bt dzk+27’cz 1 —tik)n, (13)

i=1 k=1 i=1

such that constraints (2), (4), (9) are respected.

The n and v, parameter setting procedure remains as in PCM. The new pa-
rameters a and b are positive user-defined constants that control the importance
given to the probability memberships and the possibility degrees, respectively.
In [14], authors suggest setting a to a smaller value than b, while keeping a large
enough to avoid coincident clusters.



To minimize the objective function, the PFCM algorithm alternates the
optimization of U, T and V until convergence. The update formula of U is
identical to FCM and is given by equation (5). Possibilistic membership and
centroid update expressions, equations (14) and (15), remain similar to PCM:

b\
tig= |1+ <d12k> ) (14)
Vi

(auiy + bt} )x;

o

M

Vi =
(auly +btl))

i=1

3. PFCM with partial supervision and an adaptive distance

8.1. Introduction of labeled patterns in PFCM

Let us assume that some background knowledge is available; then, we can
introduce the following definition:

Definition 1. (Soft label) Given a priori information about object x;, then
the prior membership possibility fix € [0, 1] for object x; to belong to cluster k
is said to be a soft label.

The above definition allows us to express full possibility that x; is associated
to cluster k£ when its membership possibility is f;x = 1. The opposite case can
be expressed by f;r = 0: it corresponds to the total certainty that x; does not
belong to cluster k. Notice that the possibilistic framework allows to express
a strong possibility that object x; belongs to multiple clusters k, k', etc. as
fit =1, firr =1 and so on.

To identify which objects are known to be associated (soft labeled patterns)
with which clusters, we define the variable b;; such that:

b — { 1, if a possibilistic opinion that x; belongs to cluster k has been given,
=1 0, otherwise.
(16)
As it will be shown in equation (17), b is used to define a penalty term
in the clustering model that includes all possibilistic information f;r. It is
important to mention that only a small amount of objects might be labeled by
human experts. Thus, it is necessary to state which possibilistic information is
available by using the b;; variable.

Example 1.

Let us consider a data set composed of n patients that have one (and only
one) of the three following diseases: diy, dia, diz. For all the patients, phenotype
observations have been collected in the form of numerical attributes, leading to
the creation of X. In this context, which disease which patient suffers from



is not known. However, as a piece of extra information, a doctor has given
a precise (or imprecise) opinion about the disease suffered by four patients.
Indeed, the doctor thinks it is highly possible that patient x; has di; or dis,
but not diz, which leads to define fi; = 1, fio = 1 and fi;3 = 0. For patient
X3, the doctor has provided specific possibilities that he suffers from diq or dis,
ie. fa1 = 0.8, fag = 0.6, but did not give an opinion about the last disease.
Consequently, the possibility fo3 is not defined (it is unknown). Finally, the
doctor suspects patients x3 and x4 to have di;. Since he is less sure for x4, he
set a lower possibility than for x3: f3; = 1 and f417 = 0.9. No information has
been supplied for dis and dis.

Table 1 resumes the a priori information available for these patients. The
variable b;; is set to 1 when the doctor has mentioned a possibility. Note that
possibilistic values f;; related to b;; = 0 are not provided because they do not
influence the penalty term defined in (17). The other patients, from x5 to x,,
with all b, Vk € [1,3] set to 0, correspond to patients where no opinion has
been provided by any doctor. Since no background knowledge is available, they
represent unlabeled patients.

Table 1: Background knowledge formulation.

diq dio dig

biv  fir | bia  fi2 | bizs  fiz
X1 1 1 1 1 1 0
X9 1 0,8 1 0,6 0 -
X3 1 1 0 - 0 -
x| 1 09|00 -0 -
X5 0 - 0 - 0 -
X 0 - 0 - 0 -

Inspired by [25], we propose to add the penalty term presented below in
Jprcop in order to take into account the soft labeled patterns:

n C
Jpenalty = Z Z bik(tik - fik)nd?kv (17)
i=1 k=1
where n > 0, the parameter that controls the fuzziness of the possibilistic
partition, is even. Ideally, the obtained possibilistic value t;; should be iden-
tical to its prior degree of possibility f;x. However, such requirement leads to
inconsistent solutions when a labeled object i is near a centroid vy, for which the
possibility f;r is low. This situation occurs with noisy labels or with data sets
that contain intricate structures. Consequently, as in [25], the penalty value is
relaxed for objects closed to centroids by considering dfk as a coefficient.



8.2. Adaptive distance

PFCM generates a partition whose clusters take a spherical shape that often
does not represent the real structure of the data. In this work, we propose
to use an adaptive distance such that (1) the shape of the resulting clusters
best matches the structure of the data and (2) the solution of the partially
supervised clustering algorithm is lead towards a desired solution. Let us provide
a definition of adaptive distance in the general clustering framework.

Definition 2. (Adaptive distance) Let X be a data set that can be parti-
tioned into ¢ groups or clusters such that | J, X5 € X and X, N X = 0. Then,
a metric d, under which the closer the distance between x;,x; € X}, and the
farther the distance between objects x; € Xy, x; € Xy with k # k', whose
parameters are adjusted from the data is said to be an adaptive distance.

An adaptive measure that follows definition 2 and that has been widely used
in the literature is the Mahalanobis distance. Thus, following [4], we define a
Mahalanobis distance specific for each cluster. Let S = {Sy,...,S.} denote a
set of ¢ matrices, where Sy corresponds to a (p x p) positive definite matrix
associated to cluster k. The squared Mahalanobis distance between an object
x; and the cluster centroid k is defined as follows:

3, = [Ixi = vills, = (xi = vi)TSk(xi — vi). (18)
8.8. Objective function

By incorporating the penalty term (17) in Jprcas and by employing adaptive
distances (18), the new criterion to be minimized becomes:

Jsprem (U, T,V,S) = ZZ aulk—i-bt NIxi — vills,
i=1 k=1
+2 Z(l — tik)"
k=1 i=1
+C¥Z bzk 1k - flk) ||Xz - Vk”Skv (19)
i=1 k=1
subject to (2), (4), (9) and
det(Sk) = px, Vk e {l,...,c}. (20)

where o > 0 is the new parameter introduced by our algorithm. This parameter
a is a trade-off coefficient between the inherent structure retrieved without any
supervision and the consideration of the labeled patterns. Parameters a, b,
m and -, are defined as PFCM. In order to facilitate the optimization of the
objective function, 7 is set to 2. Constraints on the volume of the clusters are
imposed using equation (20), where p; > 0. These constraints allow to avoid
degenerate solution consisting to fix all matrices Sy with zero entries.

10



8.4. Optimization

The optimization of function (19) under constraints (2), (4), (9) and (20)
is an NP-hard problem. It can be solved similarly to FCM by minimizing the
objective function with the respect first to U, then T, then V and finally S
until convergence of the solution.

3.4.1. Update of the probabilistic partition

The optimization of Jgppcns with respect to U is achieved by fixing T, V
and S as constants. Since the penalty term (17) incorporated to SPFCM does
not depend on the probabilistic partition, the update of the membership degrees
U are identical to PECM, thus, they are computed using (5).

3.4.2. Update of the possibilistic partition

In order to minimize Jgspprcns with respect to T, the variables U, V, and S
are fixed. Since T is a matrix with independent rows and columns, each value
tir € T can be minimized separately. The derivative of the objective function
with respect to t;; is:

0Jsprom

Ot bt di — (L — )"t nabidi (ti — fa)"t (21)

Finding an expression for ¢;; using n > 2 is not straightforward since the
derivative of the objective function results in a polynomial of degree n— 1, as it
can be observed in (21), which might be solved using numerical methods. This
problem has also been pointed out in [25]. Similarly to [25], in order to provide
an expression for ¢;, we set 7 = 2. The derivative is then:

aJ
%}cw = tid?, — 29 (1 — tig) + 2abipd? (tix — fir)- (22)

From (22), we obtain an expression to update the possibilistic memberships:

t = Zk+a k 1kfk2 . (23)
bdik + Y + abikdik

3.4.3. Update of the centroids

Since (au} +bt%) > 0 and (ti — firx)> > 0, Jsprowm is positive semi-definite
with respect to V. As a consequence, the minimum of the objective function
corresponds to the value of V that makes the derivative vanish. Notice that each
centroid v is independent of each other and can then be handled separately.

aJ. n n
Sa%:M = Z(au%-kbt?k)(—QSk(Xi—Vk))-m Z b (ti—fir ) (=28 (xs—V4)).
i=1 i=1

(24)

11



Let z;x be a scalar such that z;; = (aul} +bt2,) + abik (ti — fir)?. Annulling
the derivative leads to the following result:

n

Z ((au% + bt?k) + Olbik(tik — fik)Q) Sk(Xi — Vk) =0, (25)

i=1
ZzikSkxi = (Z sz) Skvi. (26)
i=1 i=1

Hence, the update formula for the centroids is:

E ZikXq

Vi = (27)

§ Zik

8.4.4. Update of the Mahalanobis distance

Matrices U, T, and V are now fixed and the set of matrices S should be
determined. In order to solve the minimization problem with constraints (20)
and with respect to S, we introduce ¢ Lagrange multipliers §; and write the
Lagrangian:

E(S,él,...,6c) = JSPFCM"‘Zék(det(Sk) —pk). (28)
k=1

By deriving £ with respect to the Lagrange multipliers and annulling the
derivative, we obtain
pr = det(Sg). (29)

It can be seen that the above equation is identical to (20).

The Lagrangian is now minimized with the respect to S. Since matrices are
independent of each other, each matrix Si can be optimized separately. The
derivative of £ with respect to Si is:

Z (aull + bt —vi)(x; —vi) T

“+a Z bik(tik — fik)2(xi — Vk)(Xi — Vk)T
i=1
—0k det(Sk)S; " (30)

Let ¥ be a matrix such that

é Z au ik T bt -l— Oébik(tik — fik)Q) (Xi — Vk)(Xi — Vk)T. (31)

12



This matrix can be considered as a partially supervised possibilistic covari-
ance matrix. Notice that each term (x; — vi)(x; — vi)? is symmetric and
positive semi-definite matrix, and each scalar (au} + bt%) + abi(tix — fix)?
is > 0. Hence, the weighted sum corresponding to 3y is a symmetric positive
semi-definite matrix. Annulling the derivative of the Lagrangian gives:

), — 0p det(Sy)S; ' =0, (32)
%) = 0 det(Sy)S; " (33)

Using constraint (20) and multiplying by Sy leads to:
kS = O prl, (34)

where T € R(®P*P) is the identity matrix. Computing the determinant of the
above equation and using the properties of a squared matrix, we obtain:

det(EkSk) = 5£p§, (35)
det(Zp)pr = 0ppp (36)
det(2)))7
Pk

Thus, introducing (37) in (33), the equation to update the matrix Sy is:

1
Sk =pl det(p)PErY,  Vke{l,... ¢} (38)

Since 3y, is positive semi-definite, it can occur that the matrix is not invert-
ible in rare situations such as linearly correlated points in a cluster. A solution
identical to [49] can be employed to overcome the issue, see Appendix A.

Finally, algorithm 1 resumes the overall procedure of the SPFCM algorithm.
As any variants of k-means, this algorithm is a heuristic method that allows to
find a local minimum for the objective function of SPFCM. The solution depends
on the initialization of the centroids matrix V. Thus, it is important to run
several times the algorithm with different initializations of V. The simplest
way is to randomly initialize the centroids in the data space range for each run
of the algorithm. Alternatively, one of the run can initialize V using the mean
of the known labeled patterns [50].

3.5. Complezity analysis

Complexity analysis of the k-Means variants has been largely studied [51].
The FCM and the PFCM algorithms with a Euclidean distance have both
the same complexity of O(tcnp?), where t represents the number of iterations
reached before convergence. The complexity of our algorithm is defined by
equations (5), (23), (27), (38). The probabilistic partition update equation (5)
requires O(cp) operations using the implementation [52]. The possibilistic par-
tition update equation (23) runs in O(cn) time and the centroids update equa-
tion (27) in O(cnp) time. The computation of the ¥j matrix equation (31)

13



Algorithm 1 SPFCM with an adaptive distance
Require: Data collection X, number of desired clusters ¢, set of labeled objects
(label patterns) F' = {fir}, convergence threshold e.
Ensure: Possibilistic partition T, centroid matrix V, set of matrices S.
1: Randomly initialize V.

2: 10

3: repeat

4:  Update probabilistic partition U; using equation (5).
5. Update possibilistic partition T; using equation (23).
6:  Update centroids V; using equation (27).

7. Calculate XVk € {1,...,c} using equation (31)

8: for each ¥, do

9: if Xy is singular then

10: Render ¥, positive definite using Algorithm 2.
11: end if

12:  end for

13:  Update the set of matrices S; using equation (38).
14: t+t+1

15: until ||Vt — Vt,1|| <e

requires O(cnp?) operations and the update equation of the matrices (38) re-
quires O(cp?) time. In total, the SPFCM algorithm with a Mahalanobis distance
has a complexity of O(tncp? + tcp3), which corresponds to the complexity of
FCM with a Mahalanobis distance [4]. The SPFCM with a Euclidean distance
has a complexity identical to FCM and PFCM with a Euclidean distance, i.e.
O(tenp?).

4. Experimental Results

4.1. Interest of adding labeled patterns

To illustrate the interest of the SPFCM algorithm, we created a synthetic
data set named gaussK2. As it can be observed in Figure 2(a), gaussK2 con-
sists of four Gaussians generated in a two-dimensional space and divided into
two vertical classes. The hard partition obtained after applying PFCM with a
Euclidean distance (PFCM-eucl) on this data set, a = 0.5, b = 5 and after com-
puting the maximal possibilistic rule is shown in Figure 2(b). The Euclidean
distance, which only allows the search of spherical classes, is not adapted for the
gaussK2 data set. This explains the singular partition obtained, with a diagonal
boundary.

In order to take into account the inherent structure of the data, we run
PFCM with a Mahalanobis distance (PFCM-mah) and the same parameter set-
tings as for PFCM-eucl. PFCM-mah was run five times on gaussK2 with various
centroids initialization randomly chosen. The possibilistic partition providing
the lowest objective function value was kept. As illustrated in Figure 3(a),

14



X % X o
x
3 X 0,0®o0
L X X o o o
? X % %o & ®

° X XAXK ’Q‘xo
XX Xy K X
6 X xxX
8 %éx“ -+
X
W x
x £

Figure 2: The gaussK2 data set: (a) the true labels, (b) hard partition obtained using PFCM-
eucl. Symbols ’Xx’ and ’o’ represent the real classes. Colors and big crosses in (b) indicate the
clusters found by PFCM-eucl and their centroids, respectively.

PFCM-mah obtains a horizontal boundary between the two clusters. However,
it is clear that this solution does not correspond to the true partition of the
data.

To provide labeled patterns on our synthetic data set, we play the role of
the human expert by randomly selecting and labeling 10 objects and execute
SPFCM with the same parameters and o« = 1. Notice that, as in real scenar-
ios, the human expert must make sure that labeled patterns are representative
enough of the data. We applied five times SPFCM-mah on gaussK2 with random
centroid initialization and we retain the solution with the minimum objective
function value. As it can be observed in Figure 3(b), a small number of labeled
patterns is enough to lead the algorithm toward the desired representative so-
lution of the data structure.

4.2. Data sets

The performance of the proposed algorithm has been evaluated on various
well-known data sets coming from the UCI Machine Learning repository!. The
experiments were performed on an Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50
GHz. Table 2 presents the characteristics of each data set, i.e the number of
objects n, the number of attributes p, the number of real classes ¢, and the
distribution of objects in the classes.

Drift3PCA9 corresponds to the third batch proposed in the UCI Machine
learning repository. It contains originally 128 attributes that can be compressed
using a Principal Component Analysis without losing the essence of the data

Thttp://www.ics.uci.edu/ mlearn
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Figure 3: Final hard partition obtained with (a) PFCM-mah and (b) SPFCM-mah. Real
clusters are shown using different markers and found clusters are shown using different colors,
‘+’ markers show the cluster centroids, and labeled patterns used by SPFCM are shown using
gray markers.

Table 2: Characteristics of the data sets.

n p c
Banknote | 1372 4 {762,610}
Drift3PCA9 | 1586 9  {365,490,216,240,275}
DryBean 6907 16 {2027,1322,1630,1928}
ForestFires | 122 10 {63,59}
Iris 150 4 {50,50,50}
LettersVZ | 3823 5  {764,752,787,786,734}
Sat 2236 36 { 1533,703}
Vehicle | 846 18  {199,217,218,212}
Wine 178 13 (59,71,48)
ToysC10 | 5000 2 {500 x 10 }

structure. Finally, 9 components that represent over 99% of the information on
the Drift3 data set have been retained. Drybean is a selection of four types of
beans from the Dry Bean original data set. The LettersVZ data set is a subset
of the Letters data set where only letters from V to Z have been kept. Finally,
ToysC10 is a synthetic data set generated with various Gaussians as shown in
Figure 4.

4.3. Performance metrics

To compare our method, five partially supervised clustering algorithms have
been selected. Table 3 resumes their properties as well as the SPFCM charac-
teristics. The SFCM, ESFCM, and SPFCM methods have the particularity to
be able to handle a Euclidean and a Mahalanobis distance.

Probabilistic partition generated by SFCM, ESFCM and possibilistic par-
tition produced by SPCM, SRPCM, SPFCM can be transformed into a crisp
partition P using the maximal probabilistic/possibilistic rule. Then, since the
actual partition P is well-known for all data sets, it is possible to compare it with
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Figure 4: ToysC10 data set.

Table 3: Compared algorithms. Possible partitions are possibilistic (T), fuzzy (U) and hard
(H) partitions.

Algorithms Ref Distance Partition
Eucl. | Mah. | T | U | H
SKMEANS [26] X X
SFCM [25, 35] X X X
ESFCM [36] X X X
SPCM [39] X X
SRPCM [41] X X
SPFCM X X X | X

the obtained crisp partition using the ARI measure [53]. A confusion matrix is
also computed to deeper analyze the results. Since the data sets have more than
two classes, this confusion matrix is split into several binary confusion matrices
using the one-vs-all rule. Then, quantitative measures such as the precision,
recall and Fy score [54] can be calculated for each confusion matrix. The pre-
cision indicates the ratio between the number of objects correctly identified as
positives over the total number of objects retrieved as positive:

TP
P=———
TP+ FP
where T P corresponds to the number of true positives and F' P to the number of
false positives. The recall is the ratio between the number of objects correctly

identified as positives and the total number of objects that actually belong to
the positive class.

(39)

TP
TP+ FN’
where F'N is the number of false negatives. Finally, the F-score is the harmonic
mean of the precision and recall. In order to obtain general measures of the
precision, recall and the Fj score, a weighted average is performed using the
number of objects of each class.

R (40)
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In order to quantify the degree of uncertainty and imprecision existing in
the possibilistic clustering partition, we propose to use the u-certainty measure,
also called imprecision measure or non-specificity measure [55, 56]:

c
u(t) = (Zm — Ts) log2<k>> + (1 - m) logy(e), (41)
k=1
where ¢ corresponds to the possibilistic distribution of the object i and 7 denotes
the reordered possibilistic distribution ¢ such that 7y > 79 > -+ > 7. and 7.1 is
a variable set to 0. The measure ranges from 0 in the case of complete knowledge
to loga(c) when there exists a total imprecision or uncertainty. The u-certainty
measure is normalized when it is divided by logz(c). We define unorm(T) as the
average of the normalized u-certainty for the possibilistic distribution of each
object.

4.4. Ezxperimental protocol
Table 4 presents the parameters, their domains, the values set for the exper-
iments, and the algorithms which employ them.

Table 4: Parameter settings for semi-supervised clustering algorithms.

domain | used value algorithms

a RT 0.5 PFCM, SPFCM

b R* 5 PFCM, SPFCM

n R 2 PCM, PFCM, SPFCM

m R 2 FCM, PFCM, SPFCM
{(71,-- .7} | Rso eq. (10) | PCM, PFCM, SPFCM

o R* 1 SPFCM
{p1,...,pe} | Rso | {1,...,1} FCM-GK, SPFCM

For SPFCM, +, is fixed as explained in [10] with equation (10) and K = 1.
The influence of parameters b and a on the clustering performance is analyzed in
Sections 4.5 and 4.6. The constraints on cluster volumes pi Vk € {1,...,c} are
set to 1. Indeed, with no prior information about the clusters size, we assume
that the clusters have identical volume.

Labeled patterns were defined by randomly picking objects in the data set
and by assigning them their true labels with the highest possibility, except for
experiments implying noisy labels, as it will be explained in section 4.7. Note
that in a real application, the labels are provided by an expert. This set of
labels must be able to fully cover the data space to ensure that the inherent
structure of the data will be found. The role of the expert consists in verifying
such property using the background knowledge of its domain.

In order to obtain a fair comparison, all tested algorithms use the same
initialization for centroids and the same set of labeled patterns. Experiments
consist of 100 trials with a given percentage of labeled patterns. Each trial cor-
responds to 5 executions of an algorithm with different centroid initializations.
The partition with the minimum objective function value is then selected.
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4.5. Tuning the possibilistic coefficient b

Similar to PFCM, the SPFCM algorithm needs to set its two parameters a
and b. For all the data sets, we fixed a = 0.5 to give a relative importance to
the probabilistic partition, in order to avoid coincident clusters (cf. section 2.3).
Then, different values of b ranging from 0.5 to 15 are tested. High (respectively,
low) values of b increase (respectively, decrease) the influence of the possibilistic
partition. Tables 5 and 6 show the average ARI of SPFCM with o = 1 obtained
on each data sets. Columns show the percentage of labeled patterns whereas
lines represent the b values.

Table 5: Influence of the b parameter with respect to the percentage of labeled patterns.
Average ARI of SPFCM.
Euclidean Mahalanobis

5 10 15 20 25 30 5 10 15 20 25 30

0.5 | 0.06 0.09 0.13 0.18 0.23 0.27 0.02 0.32 056 0.67 0.74 0.79
0.07 0.12 0.17 0.23 0.29 0.35 0.37 0.77 084 0.88 0.91 0.93
0.08 0.15 0.21 0.29 0.37 0.44 0.88 0.90 091 0.92 093 0.94
0.09 0.16 0.25 0.34 0.43 049 0.90 091 092 093 094 094
10 | 0.10 0.17 0.26 0.36 044 050 || 091 092 093 093 094 095
15 | 0.10 0.17 0.27 036 044 0.50 || 091 092 093 094 094 0.95

Banknote
S

0.5 | 044 046 048 0.51 0.54 0.57 0.40 0.46 049 0.51 0.55 0.61
0.44 0.47 049 0.53 0.57 0.61 0.44 0.53 061 0.66 0.73 0.80
043 0.46 051 0.59 0.62 0.65 0.52 0.65 0.73 0.77 0.84 0.86
0.42 0.52 0.56 0.59 0.62 0.65 0.84 089 087 086 0.85 0.87
10 | 045 0.56 0.57 0.59 0.62 0.65 0.86 0.88 0.89 0.88 0.88 0.89
15 | 0.46 0.56 0.58 0.59 0.62 0.65 0.87 0.89 090 0.89 0.89 0.90

Drift3PCA9
S .

0.5 | 069 077 079 0.81 0.82 0.83 0.71 0.79 0.84 087 0.89 0.90
0.76 0.79 080 0.82 0.83 0.84 0.83 0.85 0.87 0.88 0.88 0.89
0.77 079 081 0.82 0.83 0.84 0.84 086 0.87 0.88 0.89 0.90
0.78 0.79 0.81 082 0.83 0.85 || 0.84 086 0.87 0.88 0.89 0.90
10 | 0.78 0.79 081 082 083 085 || 0.84 086 0.87 0.89 0.90 0.90
15 | 0.77 0.79 081 0.82 083 085 || 0.84 086 0.87 0.89 090 0.90

DryBean
o

0.5 | 066 068 0.69 0.72 0.72 0.74 0.49 0.55 0.57 0.63 0.65 0.68
0.67 068 0.69 0.71 0.72 0.74 0.60 0.63 065 0.68 0.70 0.72
0.67 068 0.69 0.70 0.71 0.72 0.63 0.66 0.68 0.71 0.72 0.74
0.66 0.67 0.68 0.69 0.70 0.71 0.65 0.66 0.69 0.71 0.73 0.75
10 | 0.65 0.66 0.67 0.68 0.70 0.71 0.65 0.67 0.69 0.71 0.73 0.75
15 | 0.64 0.65 0.67 0.68 0.70 0.71 0.65 0.67 0.69 0.71 0.73 0.75

UL N =

ForestFires

05| 079 080 081 0.82 082 0.83 0.35 0.44 060 0.73 0.78 0.81

1 0.78 080 0.81 0.82 0.82 0.83 0.65 0.72 0.77 0.83 0.85 0.88
@ 2 0.75 0.79 0.81 0.82 0.82 0.83 0.72 0.79 083 0.88 0.90 0.91
= 5 076 0.79 0.81 0.81 0.81 0.83 0.76 0.85 0.88 090 091 0.93
10 | 0.76 0.79 0.81 0.81 0.81 0.82 0.77 086 0.89 091 092 0.93
15 | 0.76 0.79 0.80 0.81 0.81 0.82 0.77 0.85 0.89 091 092 0.93

Unsurprisingly, the accuracy of the clustering algorithm mostly increases
when the percentage of labeled patterns grows. It can also be observed that
the effect of the parameter b is most of the time not affected by the selected
percentage of labeled patterns. Exceptions appear only when the accuracy is
low, i.e. when the distance chosen does not suit. Finally, most of the time a
high value of b allows to obtain a better accuracy. Only the Euclidean distance
with ForestFire, Iris, and Sat seems to better work with a low value of b.
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Table 6: Influence of the b parameter with respect to the percentage of labeled patterns.
Average ARI of SPFCM.

Euclidean Mahalanobis
5 10 15 20 25 30 5 10 15 20 25 30

0.5 0.37 0.42 0.45 048 0.52 0.55 0.50 0.61 0.68 0.72 0.75 0.78

§ 1 0.40 0.44 047 0.51 0.55 0.58 0.54 0.65 0.71 0.75 0.78 0.81
@ 2 0.40 045 0.49 0.53 0.57 0.60 0.57 0.69 0.75 0.79 0.82 0.84
%’ 5 0.40 0.46 051 0.56 0.59 0.62 0.61 0.73 0.78 0.82 0.85 0.87
3 10 0.40 0.47 0.52 0.57 0.60 0.63 0.63 0.75 0.80 0.84 0.86 0.88
15 0.40 0.47 0.53 057 0.60 0.63 0.64 0.75 0.81 0.84 0.87 0.88

0.5 | 0.85 0.85 0.86 0.87 0.88 0.88 0.80 0.81 0.84 0.85 0.87 0.89

1 0.83 0.84 0.85 0.86 0.87 0.88 0.82 0.84 0.88 0.90 0.92 0.94

= 2 0.82 0.83 0.84 0.85 0.86 0.87 0.85 0.89 092 0.95 0.96 0.97
n 5 0.82 0.83 0.84 0.85 0.86 0.87 0.89 0.93 096 0.97 0.98 0.98
10 0.82 0.83 0.84 0.85 0.86 0.87 091 0.95 097 0.98 0.98 0.98

15 | 0.82 0.83 0.84 0.85 0.86 0.87 0.92 096 097 0.98 0.98 0.98

0.5 | 0.06 0.09 0.12 0.14 0.16 0.17 0.03 0.08 0.18 0.26 0.33 0.41

° 1 0.07 0.12 0.13 0.14 0.15 0.16 0.07 0.18 0.31 0.39 047 0.54
o] 2 0.10 0.13 0.13 0.13 0.14 0.16 0.13 0.29 041 0.49 0.55 0.60
3 5 0.11 0.13 0.13 0.13 0.14 0.16 0.21 0.37 047 0.54 0.59 0.64
> 10 | 0.12 0.13 0.13 0.14 0.15 0.16 0.25 0.39 0.49 0.56 0.61 0.66
15 0.12 0.13 0.13 0.13 0.14 0.15 0.26 0.40 049 0.57 0.61 0.66

0.5 | 0.67 0.75 0.81 0.85 0.88 0.90 0.20 0.34 0.44 0.48 0.57 0.62

1 0.84 0.88 090 0.90 0.92 0.92 0.26 0.39 048 0.52 0.61 0.67

& 2 0.89 090 091 091 0.92 0.93 0.30 0.42 0.52 0.56 0.64 0.70
§ 5 090 090 091 092 0.92 093 0.35 0.46 0.55 0.60 0.67 0.71
10 | 0.90 0.90 091 091 0.92 0.93 0.37 0.47 0.56 0.61 0.68 0.72

15 0.89 0.90 091 091 0.92 093 0.38 0.48 0.57 0.61 0.68 0.72

Conversely, we observed for all data sets that the highest is the value of b, the
more the clustering solution contains uncertainties and imprecisions. Figure 5
illustrates this behavior on the Drift3PCA9 data set. It can be noticed that the
behavior is independent of the integration of labeled patterns.

In order to obtain a good trade-off between the accuracy for the cluster-
ing partition and the degree of uncertainties/imprecision available in the final
partition, we choose to set b = 5.

4.6. Influence of the penalty coefficient a

The penalty coefficient a, which controls the trade-off between the respect
of the labeled patterns and the inherent structure of the data, is a difficult
parameter to tune. Indeed, too low values make the algorithm neglect labels,
and inversely, too high values force the algorithm to respect the labels but do
not ensure an overall coherent solution with compact classes. Tables 7 and 8
present the mean ARI obtained with SPFCM such that a = 0.5, b = 1 and
a € [0.01 1]. Columns show the percentage of labeled patterns whereas lines
represent the « values.

Results show that high penalty coefficients give most of the time better
accuracy. Hence, we set o = 1 for all experiments.
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Figure 5: U-certainty measure obtained using SPFCM on Drif3PCA9 data set
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Table 7: Influence of the o parameter with respect to the percentage of labeled patterns.
Average ARI of SPFCM.

Euclidean Mahalanobis
5 10 15 20 25 30 5 10 15 20 25 30

0.01 | 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.05 0.05 0.04 0.04 0.04

% 0.05 | 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.03 0.02 0.01
£ 0.1 0.03 0.04 0.05 0.06 0.07 0.08 0.04 0.04 0.02 0.01 0.14 0.61
g 0.5 0.06 0.09 0.14 0.18 0.23 0.27 0.04 0.65 0.77 0.82 0.86 0.88
M 1 0.07 0.12 0.17 0.23 0.29 0.35 0.37 0.77 0.84 0.88 091 0.93
o | 0.01 | 040 0.40 040 041 0.41 041 0.31 031 0.33 0.32 0.35 0.41
S 0.05 | 0.41 041 0.40 0.40 0.40 0.39 0.37 0.41 048 0.49 0.51 0.51
% 0.1 0.40 0.40 0.39 0.41 042 0.42 0.40 0.43 045 0.45 044 044
& 0.5 0.41 0.45 047 0.49 052 0.55 0.42 047 0.52 059 0.66 0.74
5 1 0.44 0.47 049 0.53 057 0.61 0.44 053 0.61 066 0.73 0.80
0.01 | 0.62 0.62 0.62 062 0.62 0.62 0.61 0.62 0.64 0.66 0.67 0.68

g 0.05 | 0.62 0.63 0.64 0.67 0.71 0.75 0.66 0.73 0.77 0.78 0.79 0.79
C% 0.1 0.63 0.65 0.71 0.76 0.79 0.81 0.74 0.77 0.79 0.80 0.81 0.81
= | 0.5 0.72 0.78 0.80 0.81 0.82 0.84 0.78 0.85 0.86 0.87 0.88 0.88
A 1 0.76 0.79 0.80 0.82 0.83 0.84 0.83 0.85 0.87 0.88 0.88 0.89
0.01 | 0.74 0.74 0.75 0.75 0.75 0.75 0.65 0.66 0.66 0.66 0.66 0.66

0.05 | 0.74 0.75 0.75 0.75 0.74 0.74 0.66 0.67 0.68 0.70 0.72 0.73

o 0.1 0.74 0.74 0.74 0.75 0.76 0.76 0.66 0.68 0.70 0.73 0.75 0.77
= 0.5 0.76 0.78 0.79 0.81 0.82 0.83 0.65 0.70 0.75 0.80 0.83 0.85
1 0.78 0.80 0.81 0.82 0.82 0.83 0.65 0.72 0.77 0.83 0.85 0.88

. 0.01 | 0.64 064 0.64 064 0.64 0.64 0.57 0.57 0.57 0.57 0.57 0.57
© |1 005 | 065 065 066 066 0.66 0.67 0.57 0.58 0.58 0.59 0.59 0.60
% 0.1 0.65 0.66 0.66 0.67 0.67 0.68 0.57 0.58 0.59 0.60 0.61 0.62
§ 0.5 0.66 0.67 0.68 0.70 0.70 0.71 0.59 0.62 0.63 0.66 0.68 0.70
2 1 0.67 0.68 0.69 0.71 0.72 0.74 0.60 0.63 0.65 0.68 0.70 0.72

4.7. Interest of uncertain labels

One major advantage of the SPFCM algorithm is its capacity to integrate
labels expressed with degrees of possibility on classes. The following experiment
shows the interest on data sets containing noisy labels.

Figure 6 presents the experimental procedure followed to add noise on la-
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Table 8: Influence of the o parameter with respect to the percentage of labeled patterns.
Average ARI of SPFCM.

Euclidean Mahalanobis
5 10 15 20 25 30 5 10 15 20 25 30

N 0.01 0.28 0.29 0.32 0.35 0.35 0.35 0.42 0.48 0.51 0.54 0.57 0.59
> | 0.05 | 031 0.34 0.37 041 044 047 0.43 0.52 0.58 0.63 0.66 0.68
g 0.1 0.32 0.37 041 0.45 0.48 0.50 0.45 0.54 0.60 0.65 0.69 0.72
% 0.5 0.39 0.43 046 0.49 0.53 0.56 0.51 0.63 0.69 0.73 0.76 0.78
= 1 0.40 0.44 0.47 0.51 0.55 0.58 0.54 0.65 0.71 0.75 0.78 0.81
0.01 | 0.82 0.82 0.82 0.82 0.82 0.82 0.60 0.67 0.72 0.75 0.78 0.80
0.05 | 0.82 0.82 0.83 0.83 0.83 0.83 0.73 0.77 0.79 0.81 0.82 0.84

< 0.1 0.82 0.83 0.83 0.84 0.84 0.85 0.77 0.78 0.80 0.82 0.83 0.85
0 0.5 0.83 0.84 0.85 0.86 0.87 0.87 0.80 0.82 0.85 0.87 0.89 0.91
1 0.83 0.84 0.85 0.86 0.87 0.88 0.82 0.84 0.88 090 0.92 0.94

0.01 | 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00

o | 0.05 | 0.06 0.07 0.06 0.07 0.07 0.07 0.00 0.01 0.01 0.01 0.02 0.04
< | 01 0.06 0.06 0.07 0.08 0.08 0.08 0.00 0.01 0.02 0.06 0.10 0.16
"5 0.5 0.07 0.08 0.12 0.13 0.13 0.13 0.04 0.11 0.23 0.31 0.38 0.45
> 1 0.07 0.12 0.13 0.14 0.15 0.16 0.07 0.18 0.31 0.39 0.47 0.54
0.01 | 0.72 0.72 0.72 0.73 0.73 0.73 0.06 0.10 0.16 0.21 0.28 0.33

0.05 0.74 0.75 0.76 0.80 0.83 0.85 0.14 0.24 0.36 0.42 0.51 0.57

21 01 0.76 0.81 0.84 0.86 0.88 0.88 0.16 0.30 0.41 0.46 0.55 0.60
§ 0.5 0.82 0.86 0.89 0.90 0.91 0.92 0.25 0.38 0.47 0.51 0.59 0.65
1 0.84 0.88 090 0.90 0.92 0.92 0.26 0.39 0.48 0.52 0.61 0.67

bels. First, a percentage of objects is selected to create a priori knowledge (AK
percentage) in the form of labels. Then, from the set of objects dedicated to
being labeled, a percentage is retrieved to create noisy labels (NL percentage)
and the rest remains with their true labels (TL percentage). Finally, depending
on the set of labels, a different possibility value is set: TLP for true labels and
NLP for noisy labels.

TLP

True labels

Data set Labels

NL% NLP

Noisy labels

Figure 6: Noisy labels set generation.

In the experiments, AK is set either to 0, 15, or 30%, NL and TL are both
fixed to 50%, TLP is equal to 1, and values tested for NLP are 1, 0.5, and 0.2.
Average ARI is presented Table 9. As expected, noisy labels make decrease
most of the time the accuracy of the clustering solution when NLP is set to
1. However, with a lower value of the NLP, the SPFCM algorithm manages to
improve the performances compared to PFCM. Thus, NLP=0.2 gives the best
results. Such an experiment shows the importance to set a low possibility value
on labels when the a priori knowledge is not certain.
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Table 9: Average ARI obtained with different NLP values (in lines) varying with the percent-
age of labeled patterns (in columns).
Euclidean Mahalanobis
(% labeled patterns) || (% labeled patterns)
NLP [ 0% 15% 30% 0% 15% 30%
Banknote 1 0.03 0.02 0.03 0.43 0.38 0.09
0.5 0.03 0.09 0.15 0.43 0.76 0.65
0.2 0.03 0.11 0.20 0.43 0.87 0.85
Drybean 1 0.67 0.67 0.53 0.80 0.67 0.53
0.5 0.67 0.73 0.68 0.80 0.81 0.73
0.2 0.67 0.76 0.76 0.80 0.86 0.86
1 0.38 0.42 0.39 0.65 047 0.37
Drift3PCA9 0.5 0.38 0.42 0.49 0.65 0.72 0.68
0.2 0.38 0.46 0.53 0.65 0.81 0.83
Forestfires 1 0.29 0.23 0.18 0.65 0.30 0.11
0.5 0.29 0.21 0.21 0.65 0.40 0.33
0.2 0.29 0.21 0.22 0.65 0.58 0.59
1 0.75 0.64 0.44 0.67 0.32 0.19
Iris 0.5 0.75 0.74 0.70 0.67 0.53 0.45
0.2 0.75 0.78 0.77 0.67 0.75 0.77
1 0.28 0.34 0.31 0.17 041 0.43
LettersVZ 0.5 0.28 0.36 0.34 0.17 0.55 0.52
0.2 0.28 0.39 0.42 0.17 0.62 0.65
Pen 1 0.35 0.50 0.46 0.33 0.66 0.59
0.5 0.35 0.57 0.52 0.33 0.74 0.67
0.2 0.35 0.62 0.61 0.33 0.81 0.82
Sat 1 0.83 0.68 0.40 0.69 0.06 0.02
0.5 0.83 0.78 0.72 0.69 0.65 0.46
0.2 0.83 0.81 0.81 0.69 0.72 0.71
1 0.11 0.09 0.09 0.01 0.10 0.12
Vehicle 0.5 0.11 0.11 0.10 0.01 0.19 0.25
0.2 0.11 0.12 0.12 0.01 0.24 0.33
1 0.87 0.52 0.40 0.16 0.13 0.09
Wine 0.5 0.87 0.76 0.65 0.16 0.24 0.24
0.2 0.87 0.86 0.84 0.16 0.34 0.41

4.8. Performance analysis

The results of the performance analysis for SPFCM carried out on each data
set are shown in Tables 10 and 11. Confidence intervals are not reported since
they vary between 0 and 0.01. The precision (P,), recall (R,) and Fy (Fy,)
measures are computed using only the unlabeled objects while the Adjusted
Random Index is computed with and without labeled patterns (ARI and ARL,).

Notice that as the percentage of labeled patterns increases, the ARI,, and the
Fy, score also increase. Then, it is clear that labeled objects influence unlabeled
objects and lead them to a solution that better fits the inherent structure of
the data. Finally, results reported in Table 10 and 11 show an improvement
on precision and recall measures when labeled patterns are integrated into the
clustering algorithm.
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Table 10: Performances of SPFCM using a = 0.5, b = 5 and @ = 1 with the respect to the
percentage of labeled patterns.

Euclidean Mahalanobis

P, R, Fi, ARI, ARI P, R, Fi, ARI, ARI

0 | 0.60 0.59 0.59 0.03 0.03 0.81 0.80 0.80 0.48 0.48

% 5 | 065 0.65 0.65 0.07 0.09 0.98 0.97 097 0.90 0.90
§ 10 | 0.70 0.70 0.70 0.12 0.16 0.98 0.98 0.98 0.90 0.91
E 15 | 0.75 0.75 0.75 0.18 0.25 0.98 0.98 098 0.91 0.92
m |20 | 079 079 079 025 0.34 0.98 0.98 0.98 0.92 0.93
25 | 0.82 0.82 0.82 0.30 0.43 0.98 0.98 098 092 0.94

30 | 0.85 0.85 0.85 0.34 0.49 0.98 0.98 0.98 0.92 0.94

0 | 0.60 0.54 0.55 0.39 0.37 || 0.67 0.69 0.66 0.75 0.74

Z? 5 | 0.82 0.72 0.74 0.46 0.46 0.89 0.87 0.87 0.84 0.83
8 10 | 0.88 0.78 0.80 0.52 0.55 0.91 0.90 090 0.87 0.85
« | 15 | 0.86 0.79 0.80 0.54 0.56 0.92 091 090 0.87 0.86
= 120|087 081 082 055 0.59 0.92 090 090 0.86 0.86
A 25 | 0.88 0.82 0.84 0.56 0.62 0.92 091 091 0.87 0.87
30 | 0.89 0.84 0.85 0.56 0.65 0.93 091 091 0.87 0.86

0 | 073 0.73 0.68 0.75 0.67 || 0.83 0.83 0.83 0.80 0.80

g 5 | 092 0.90 0.90 0.84 0.78 0.93 0.92 092 0.84 0.84
Cg 10 | 0.92 0.91 091 0.85 0.79 0.94 093 093 0.85 0.86
» | 15 | 093 092 092 0.85 0.81 094 094 094 0.86 0.87
A | 20| 093 093 093 0.86 0.82 0.95 095 095 0.87 0.88
25 | 0.94 093 093 0.8 0.83 0.95 095 095 0.87 0.89

30 | 094 094 094 0.86 0.85 0.96 095 095 0.88 0.90

0 | 090 0.89 0.89 0.66 0.62 0.92 0.90 090 0.61 0.64

£ 5 1092 091 091 0.64 0.66 0.92 091 091 0.65 0.65
% 10 | 0.92 091 0.91 0.64 0.67 0.93 091 091 0.66 0.66
§ 15 | 0.92 0.92 092 0.65 0.68 0.93 092 092 0.68 0.69
ﬁ 20 | 0.93 0.92 092 0.63 0.69 0.93 0.93 0.93 0.68 0.71
25 | 092 091 091 064 0.70 0.93 091 091 0.69 0.73

30 | 0.94 093 093 0.64 0.71 0.93 092 092 0.70 0.75

0 | 0.89 0.89 0.89 0.73 0.75 0.86 0.85 0.85 0.73 0.66

5 1091 090 090 0.76 0.76 0.92 091 091 0.82 0.76

w | 10 | 093 0.92 092 0.77 0.79 0.95 095 095 0.86 0.85
A 15 | 094 094 094 0.77 0.81 0.96 0.96 096 0.88 0.88
20 | 0.93 0.92 092 0.77 0.81 0.97 0.97 097 0.90 0.90

25 | 094 093 093 0.77 0.81 0.98 0.98 098 091 0.91

30 | 095 094 094 0.77 0.83 0.97 0.97 097 0.92 0.93

4.9. Performance comparison

The SPFCM algorithm has been compared to SKMEANS [26], SFCM [25],
ESFCM [36], SPCM [39], and SRPCM [41]. Mahalanobis and Euclidean dis-
tances were employed for SPFCM, SFCM, and ESFCM, giving six distinct algo-
rithms respectively named SPFCM-mah, SFCM-mah, SFCM-eucl and SPFCM-
eucl. SKMEANS, SRPCM, and SPCM are only carried out with a Euclidean
distance since no extension using a Mahalanobis distance exists.

Possibilistic and fuzzy partitions were transformed into hard ones in order
to compute the ARI. Figures 7 to 9 present the evolution of the mean ARI
obtained according to the percentage of labeled patterns.

Results show that a Mahalanobis distance gives better accuracy than a Eu-
clidean distance on most of the data sets considered in this work. This behavior
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Table 11: Performances of SPFCM using a = 0.5, b = 5 and @ = 1 with the respect to the
percentage of labeled patterns.

Euclidean Mahalanobis

P, R, Fi, ARI, ARI P, R, Fi, ARI, ARI

0 0.34 042 0.35 0.29 0.28 0.26 0.30 0.25 0.05 0.17

§ 5 | 062 062 0.61 0.38 0.40 0.82 0.82 0.81 0.61 0.61
12 10 | 0.73 0.72 0.71 0.43 0.46 0.88 0.88 0.88 0.72 0.73
% 15 | 0.76 0.76 0.75 0.46 0.51 0.91 091 091 0.77 0.78
S 120|079 078 078 048 0.56 0.93 092 092 0.80 0.82
25 | 0.81 0.80 0.80 0.49 0.59 0.94 094 094 0.82 0.85
30 | 0.83 0.82 0.82 0.51 0.62 0.95 0.95 095 0.84 0.87

0 | 096 0.96 0.95 0.83 0.83 0.88 0.87 0.86 0.70 0.69

5 | 096 096 0.95 0.84 0.82 0.97 097 097 0.89 0.89

< | 10 | 096 096 096 0.84 0.83 0.98 0.98 0.98 0.93 0.93
© | 15 1 096 096 096 0.84 0.84 0.99 099 099 0.96 0.96
20 | 0.96 096 096 0.84 0.85 0.99 0.99 0.99 097 0.97
25 | 0.97 0.97 097 0.84 0.86 0.99 0.99 0.99 097 0.98
30 | 0.97 097 0.97 0.84 0.87 1.00 0.99 1.00 0.97 0.98

0 | 0.64 0.64 0.62 0.76 0.75 0.69 0.70 0.69 0.84 0.83

= 5 | 092 092 091 0.87 0.86 0.95 0.95 095 0.92 0.92
Q 10 | 0.85 0.85 0.85 0.87 0.87 || 0.96 0.96 0.96 0.92 0.92
z | 15094 093 093 0.87 087 || 097 097 097 092 0.93
= | 20| 093 092 0.92 087 0.88 0.97 097 097 0.92 0.93
25 | 0.91 0.90 0.90 0.88 0.88 0.97 0.97 097 0.92 0.93
30 | 0.89 0.89 0.89 0.88 0.89 0.97 0.97 097 092 0.94

0 | 0.38 0.38 0.36 0.12 0.11 0.16 0.25 0.13 0.02 0.01

° 5 1032 033 031 0.11 0.11 0.42 0.43 0.40 0.27 0.21
© 10 | 0.35 0.36 0.35 0.12 0.13 0.60 0.61 0.60 0.36 0.37
|15 ] 036 037 035 0.11 0.13 0.71 0.71 0.70 0.43 0.47
- 20 | 0.32 0.33 0.31 0.10 0.13 0.77 0.77 0.77 0.50 0.54
25 | 0.27 0.29 0.27 0.10 0.14 0.80 0.80 0.80 0.55 0.59
30 | 0.31 0.32 0.30 0.10 0.16 0.83 0.83 0.83 0.59 0.64

0 | 096 0.96 0.96 0.88 0.87 || 0.38 0.43 0.32 0.34 0.14

5 1 097 096 096 0.87 0.90 0.66 0.66 0.65 0.35 0.35

g 10 | 0.97 0.97 0.97 0.88 0.90 0.77 0.77 0.76 0.46 0.46
= | 15 | 0.97 097 097 0.88 0.91 0.83 0.82 0.82 0.55 0.55
20 | 0.97 0.97 097 0.89 0.92 0.87 0.85 0.85 0.60 0.60
25 | 0.98 0.98 098 0.89 0.92 0.90 0.89 0.88 0.67 0.67
30 | 0.97 097 0.97 0.90 0.93 0.91 0.89 0.89 0.71 0.71

is simple to explain: an adaptive distance can discover clusters of different
sizes and shapes whereas a Fuclidean distance only makes the assumptions of
spherical shapes. However, as illustrated with Wine, a Euclidean distance can
sometimes outperform a Mahalanobis distance with a small number of labeled
patterns. Such a situation happens with intricate data sets, for example with
classes having non-geometrical shapes or highly overlapped clusters with spher-
ical shapes.

Experiences also show that although SPFCM without labeled patterns gives
mixed results, it outperforms SKMEANS and SFCM with few labeled patterns.
Such behavior is clearly explained by the use of the possibilistic framework.
Indeed, conversely to hard or probabilistic clustering algorithms, a possibilistic
algorithm can obtain a solution with closed centroids. Without background
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Figure 7: Average ARI and confidence interval obtained by different algorithms for (a) Ban-
knote, (b) Drift3PCA9, (c) Drybean, and (d) ForestFire.

knowledge, such freedom might be too important and lead to the undesired
merge of some clusters. However, with very few labeled patterns, this effect
vanishes and allows SPFCM to find an accurate solution.

4.10. Complexity analysis

The complexity of the SPFCM algorithm has been studied by computing
the CPU time and the number of iterations needed to reach convergence of
the solution. Results obtained for SPFCM with parameters set to a = 0.5,
b=>5, a =1 on a server with an Intel(R) Xeon(R) CPU E5-2670 v2 2.50 GHz
processor are shown in Table 12.

As explained in section 3, the complexity of our algorithm with a Euclidean
distance is identical to FCM with a Euclidean distance. When using a Ma-
halanobis distance, the complexity of SPFCM is equivalent to FCM with a
Mahalanobis distance. However, it can be seen that the CPU time and the
iterations number decrease as the number of labeled objects increases, whatever
the distance used. The variability of the number of iterations also drastically
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Figure 8: Average ARI and confidence interval obtained by different algorithms for (a) Iris,
(b) LettersVZ, (c) Sat, and (d) Vehicle.

reduces with labeled patterns. Thus, the labeled patterns allow the algorithm
to converge faster towards a solution.
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5. Conclusions and Future Work

In this paper, a new partially supervised clustering algorithm called SPFCM
has been introduced. The algorithm is an extension of PFCM that (1) incorpo-
rates partial knowledge in the form of labeled patterns in the clustering process
and (2) introduces Mahalanobis distances in order to characterize clusters with
ellipsoidal shapes. The SPFCM method is based on the possibilistic framework
that allows expressing various types of uncertainty. Thus, we proposed to rep-
resent labeled patterns in the form of a possibility to belong to clusters in such
a way as to allow an expert to include partial information into the clustering
algorithm.

Conducted experiments show that adding both labeled patterns and an adap-
tive distance improve the performance of the algorithm. Indeed, labeled patterns
guide the algorithm towards a desired solution or simply improve an already
good solution while the adaptive distance estimates better the shapes of the
clusters. The influence of the various parameters of SPFCM has also been stud-
ied. It turns out that most of the time labeled patterns have a low impact on
the parameters coming from PFCM and unsurprisingly, a trade-off should be
carefully chosen between the respect of the labels given in entry and the struc-
ture of the data. Our SPFCM algorithm has then been compared with other
soft clustering handling labeled patterns and has presented good results.

This research may be extended in several directions. First, an experimental
study on labeled objects having possibility to belong to several classes can be
conducted. Second, developing a method to automatically set the parameters of
the algorithm can be explored. Finally, in some applications, labeled patterns
are not available a priori, but an expert is available to provide some labels. In
this context, an active learning scheme can be developed in order to automati-
cally select the labeled objects that will have the better impact on the clustering
performance.
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Table 12: Average number of iterations and CPU time = interval confidence for SPFCM with
the respect to the percentage of labeled patterns.

Euclidean Mahalanobis

CPU time(sec)  # iterations CPU time(sec)  # iterations

0 0.40 + 0.05 104.82 + 14.30 0.58 + 0.06 120.67 £ 12.04
SB 5 0.33 £ 0.02 89.72 £+ 6.84 0.43 £ 0.03 90.65 £ 6.44
8 10 0.16 + 0.01 45.03 £ 2.54 0.31 £ 0.02 65.15 £ 5.18
x| 15 0.13 + 0.01 36.28 £ 3.32 0.27 £ 0.03 55.77 £ 5.76
=20 0.11 £+ 0.01 29.97 £ 1.76 0.27 + 0.02 56.11 £ 4.34
Al 25 0.09 £ 0.00 26.16 £ 1.16 0.25 + 0.03 51.40 £ 5.54
30 0.09 £ 0.00 23.30 £ 0.71 0.23 £ 0.02 48.50 £ 3.98
0 0.07 £ 0.01 27.48 £ 1.10 0.07 £+ 0.00 35.19 £ 1.57
w | D 0.04 + 0.00 26.52 £ 1.04 0.07 + 0.00 35.44 £ 2.29
E | 10 0.04 £ 0.00 20.08 £ 0.61 0.05 + 0.00 25.93 £ 1.25
15 0.03 + 0.00 16.74 £+ 0.36 0.04 + 0.00 20.39 £ 0.84
20 0.03 £ 0.00 14.90 + 0.34 0.03 £ 0.00 16.71 £+ 0.63
25 0.02 + 0.00 14.61 £+ 0.29 0.03 £ 0.00 15.11 £+ 0.50
30 0.02 £ 0.00 12.90 + 0.30 0.03 £ 0.00 14.02 £+ 0.37
|0 1.10 £ 0.07 166.74 £ 11.34 0.82 + 0.02 74.30 £ 1.43
>m 5 0.16 + 0.00 23.39 £ 0.64 0.35 + 0.00 31.75 £ 0.33
E 10 0.11 + 0.00 15.34 + 0.24 0.28 + 0.00 24.89 £ 0.24
2| 15 0.08 + 0.00 12.12 £ 0.15 0.23 + 0.00 20.69 £ 0.20
=120 0.07 £ 0.00 10.68 + 0.13 0.20 £ 0.00 18.00 £+ 0.18
25 0.07 £ 0.00 9.35 £ 0.09 0.18 + 0.00 15.74 £ 0.15
30 0.06 £ 0.00 8.56 £ 0.09 0.16 + 0.00 14.40 £+ 0.14

0 0.24 + 0.02 87.93 £ 5.57 1.11 £ 0.10 294.09 £+ 26.12
% 5 0.18 £ 0.03 69.32 £ 10.62 0.33 £+ 0.03 86.46 £ 8.79
= | 10 0.13 £+ 0.01 52.99 £ 3.55 0.23 + 0.02 60.04 £ 4.93
2|15 0.17 £ 0.02 69.16 £ 7.51 0.18 + 0.01 47.59 £+ 2.91
20 0.18 + 0.02 72.29 £ 8.77 0.16 + 0.01 42.72 £+ 3.59
25 0.12 + 0.01 50.01 £ 5.50 0.16 + 0.02 41.15 £ 5.21
30 0.14 + 0.02 56.26 + 10.03 0.13 + 0.02 32.80 £ 4.61
0 0.06 + 0.00 24.91 £ 0.90 0.08 + 0.00 36.86 £ 1.58
o | 0.04 £ 0.00 20.94 £ 1.02 0.07 £ 0.00 34.16 £ 0.87
£ 10 0.03 + 0.00 13.79 + 0.36 0.06 + 0.00 28.93 £ 0.52
= 15 0.02 + 0.00 11.51 4+ 0.22 0.06 + 0.00 26.58 £ 0.63
20 0.02 £ 0.00 10.39 £+ 0.18 0.05 + 0.00 25.44 £ 0.57
25 0.02 + 0.00 9.59 + 0.16 0.05 + 0.00 24.85 £ 0.67
30 0.02 £ 0.00 8.81 £ 0.15 0.05 £ 0.00 23.30 £ 0.73

Appendix A. Covariance matrix singularity correction

The solution to render the 3j invertible is detailed in Algorithm 2. It
consists in transforming a positive semi-definite matrix into a positive definite
matrix by adding small values to the null eigenvalues (cf. Algorithm 2, lines 3 to
7). The parameter &, usually set to 105, allows specifying when an eigenvalue
should be increased. Although this correction avoids the numerical problem
(inversion and determinant are now calculable), the new ellipsoid might still
be extremely elongated and ultimately not match with the cluster data. This
occurs mainly when there is a small amount of data in the cluster. To over-
come this problem, a scaled identity matrix is added to the partially supervised
possibilistic covariance matrix 3y (cf. Algorithm 2, line 1). Finally, note that
the shape tuning parameter k£ € [0,1] depends on the data set and should be
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manually adjusted [49].

Algorithm 2 Covariance singularity correction [49]

Require: Possibilistic covariance matrix positive semi-definite 3, 3 covari-

ance matrix of the whole data set, shape tuning parameter k, threshold

£.

Ensure: Possibilistic covariance matrix positive definite 3.

10 g (1 — H)Ek + Kdet(zo)l/p]:.

2: Extract eigenvalues A\ = {1, ..., Ayp} and eigenvectors @y = [Py ... Py
from Y.

3: for each eigenvalue Ay do

4 i Ay < 228 then

5: Ak 7“1&);})%).

6: end if

7: end for

8: X +— [q)kl . q)kp}diag()\kl, ceey Akp)[q)k‘l . (I)kp]
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