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bUniversité de Picardie Jules Verne, IUT de l’Oise

cLaboratoire Heudiasyc, UMR CNRS 6599

BP 20529, 60205 Compiègne, France

Abstract

The aim of cluster analysis is to group objects according to their similarity.
Some methods use hard partitioning, some use fuzzy partitioning and, recently,
a new concept of partition based on belief function theory, called credal par-
tition, has been proposed. It makes it possible to generate meaningful repre-
sentations of the data and to improve robustness with respect to outliers. All
these methods are unsupervised ones, as the similarity between the objects is
determined using only a numeric description of the objects. However, in some
applications, some kind of background knowledge about the objects or about the
clusters is available. To integrate this auxiliary information, constraint-base (or
semi-supervised) methods have been proposed. A popular type of constraints
specifies whether two objects are in the same cluster (must-link) or in different
clusters (cannot-link). Moreover, actively selecting object pairs allows us to get
improved clustering performances using only a small number of constraints. We
propose here a new algorithm, called CECM, which combines belief functions
and the constrained clustering frameworks. We show how to translate the avail-
able information into constraints and how to integrate them in the search of a
credal partition. The paper ends with some experimental results on synthetic
and real data. In particular, we show how CECM may be used to integrate
prior knowledge in a medical image segmentation task.

Keywords: Clustering, semi-supervised learning, pairwise constraints,
adaptive metric, active learning; belief functions, Dempster-Shafer theory,
evidence theory.

1. Introduction

Clustering is a classical data analysis method that aims at grouping a set
of objects into clusters based on similarity between their descriptors. However,
there are some situations in which some background knowledge about the prob-
lem is available. Making use of this extra-information in a clustering algorithm
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can help us to guide the method towards a desired solution and to improve the
classification accuracy. Prior information can be exploited at different levels
of the classification such as: the cluster level with, for instance, a minimum
distance neighbourhood [8], the model level with the requirement of balanced
clusters [31] or the specification of non desired solutions [11], or at the instance
level. Wagstaff [27] proposed to introduce two types of instance-level constraints:
the first one specifies that two objects have to be in the same cluster (must-link
constraint) while the second one specifies that two objects should not be put
in the same cluster (cannot-link constraint). Such pairwise constraints have
been considered and integrated in many unsupervised algorithms such as the
hard or the fuzzy c-means (FCM), and have recently become a topic of great
interest [28, 3, 26, 8, 19]. They have been incorporated in many different ways,
generally by including a penalty term in the objective function [2, 12] or by
altering the distances between objects with respect to the constraints [15, 28].

In the FCM algorithm, each object may belong to one or more clusters with
different degrees of membership. These degrees of membership are stored into
a fuzzy partition matrix U = (uik) and are calculated by minimizing a suitable
objective function with respect to the constraints

uik ≥ 0 ∀ i, k, (1)

∑

k

uik = 1. (2)

Each number uik ∈ [0, 1] is interpreted as the degree of membership of object i to
cluster k. Nevertheless the method sometimes produces counterintuitive results
and has poor robustness against noise and outliers. That is the reason why
possibilistic methods [17, 22] and, more recently, algorithms using the theoretical
framework of belief functions [10, 20, 21] have been proposed. All these works
are based on a new concept of partition, referred to as a credal partition, which
extends the existing concepts of hard, fuzzy and possibilistic partitions. This is
done by allocating, for each object, a mass of belief, not only to single clusters,
but also to any subset of the set of clusters Ω = {ω1, . . . , ωc}. Experiments
have shown that this additional flexibility allows us to gain a deeper insight
into the data and to improve robustness with respect to outliers. One of the
algorithms designed to derive a credal partition from data, called Evidential C-
Means (ECM), can be considered as a direct extension of FCM. In this paper,
we propose to introduce pairwise constraints in the ECM algorithm, in order
to create a new algorithm, called CECM, which will combine the advantages
of adding background knowledge and using belief functions. Furthermore, we
present a formulation of ECM that adapts the metric using a Mahalanobis
distance so that the constraints may be more easily satisfied. Finally we propose
an active learning scheme, based on the credal partition, which makes it possible
to select efficient pairwise constraints.

The remaining of this paper is organized as follows. First, a brief overview
of the theory of belief functions is provided in Section 2. In the same sec-
tion, the main fuzzy partitioning algorithms from which ECM is derived are
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presented. Then the notion of credal partition and the way to derive it from
data are described. Some useful interpretation tools are also recalled. Section 3
introduces the algorithm CECM. First, we show how to translate in a natural
way the available information in terms of constraints on belief masses. Then we
explain how to integrate these constraints in the search of the credal partition.
In Section 4, we describe a version of CECM with an adaptive metric. The
last part describes the experimental settings and the results. Several results
are presented, considering that the constraints are either available a priori or
gradually selected during the learning phase. Finally, some perspectives of our
work are presented in a conclusion.

2. Background

2.1. Belief functions

The Dempster-Shafer theory of evidence [23, 25] (or belief function theory)
is a theoretical framework for representing partial and unreliable information.
In this section, only the main concepts are recalled.

Let us consider a variable ω taking values in a finite set Ω = {ω1, . . . , ωc}
called the frame of discernment. Partial knowledge regarding the actual value
taken by ω can be represented by a mass function m, which is an application
from the power set of Ω in the interval [0, 1] such that

∑

A⊆Ω

m(A) = 1. (3)

The subsets A of Ω such that m(A) > 0 are called focal sets of m. The
value of the focal set m(A) can be interpreted as a fraction of a unit mass of
belief that is allocated to A and that cannot be allocated to any subset of A.
Complete ignorance is obtained when Ω is the only focal set, and full certainty
when the whole mass of belief is assigned to a unique singleton of Ω (m is then
said to be a certain bba). If all the focal sets of m are singletons, m is similar to
a probability distribution: it is then called a Bayesian bba. A bba m such that
m(∅) = 0 is said to be normalized. Under the open-world assumption, a mass
function m(∅) > 0 is interpreted as a quantity of belief given to the hypothesis
that the actual value of ω might not belong to Ω [24].

Given a mass function m, it is possible to define a plausibility function
pl : 2Ω → [0, 1] and a belief function bel : 2Ω → [0, 1] by:

pl(A) =
∑

B∩A 6=∅

m(B) ∀A ⊆ Ω, (4)

bel(A) =
∑

B⊆A,B 6=∅

m(B) ∀A ⊆ Ω. (5)

Functions bel and pl are linked by the following relation:

pl(A) = 1 − m(∅) − bel(A), (6)
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where A denotes the complement of A. The quantity bel(A) is interpreted as
a degree of belief in A, taking into account the mass of belief given to A and
nonempty subsets of A. In contrast, pl(A) measures to what extent one fails to
believe in A.

In order to make a decision regarding the value of ω, it is possible to trans-
form the mass function into a pignistic probability distribution [25], defined, for
a normal bba, as:

BetP (ω) =
∑

ω∈A

m(A)

|A|
∀ω ∈ Ω, (7)

where |A| denotes the cardinality of A ⊆ Ω. If m(∅) 6= 0, then a normalization
step has to be performed before carrying out the pignistic transformation. Var-
ious methods may be applied. In particular, Dempster’s normalization consists
in dividing all the masses by 1−m(∅), whereas Yager’s normalization transfers
m(∅) to m(Ω) [29].

2.2. Fuzzy c-means and variants

Let {x1, . . . ,xn} be a collection of vectors in R
p describing n objects to

classify in the set Ω = {ω1 . . . ωc}. Each cluster ωk, k = 1, c is represented by
a prototype or a centroid vk ∈ R

p. Let V denote the matrix composed of the
cluster centroids, and let U = (uik) define a fuzzy partition matrix that contains
the degrees of membership of each object to each cluster. The FCM algorithm [4]
computes V and U so as to minimize the following objective function:

JFCM(U, V ) =
n∑

i=1

c∑

k=1

uβ
ikd2

ik, (8)

subject to (1) et (2). In the objective function (8), dik represents the Euclidean
distance between the object xi and the centroid vk and β > 1 is a weighting
exponent that controls the fuzziness of the partition. The objective function
is minimized using an iterative algorithm, which alternatively optimizes the
cluster centers and the membership degrees. The update formulas for the masses
and the centers are obtained by computing the Lagrangian formulation of the
optimization problem and by setting its partial derivatives with respect to the
parameters to zero [4]. We obtain:

vk =

∑n
i=1 uβ

ikxi∑n
i=1 uβ

ik

k = 1, c, (9)

uij =
d
−2/(β−1)
ij

∑c
k=1 d

−2/(β−1)
ik

i = 1, n j = 1, c. (10)

The algorithm starts from an initial guess for either the partitioning matrix or
the cluster centers and iterates until convergence.

To detect noisy data or outliers, Davé [7] has proposed a variant of FCM
called the “noise-clustering” algorithm (NC). It consists in adding to the c initial
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clusters a “noise” cluster, associated to a fixed distance ρ to all objects. The
parameter ρ controls the amount of data considered as outliers. The membership
ui∗ of an object i to the noise cluster is given by:

ui∗ = 1 −
c∑

k=1

uik i = 1, n, (11)

The objective function to be minimized can be written as:

JNC(U, V ) =

n∑

i=1

c∑

j=1

uβ
ijd

2
ij +

c∑

i=n

ρ2uβ
i∗. (12)

Writing the optimality conditions of the problem leads, as in FCM, to direct
adaptation formulas for the memberships and the cluster centers.

The Gustafson and Kessel algorithm [13] is another interesting variant of
FCM. This algorithm extends FCM by using an adaptive distance, in order to
detect clusters of different geometrical shapes. Each cluster has its own norm-
inducing matrix Sk defined as its fuzzy covariance matrix:

Sk =

∑n
i=1 uβ

ik(xi − vk)(xi − vk)t

∑n
i=1 uβ

ik

k = 1, c i = 1, n. (13)

Then, the distance between an object xi and a center vk is taken as:

d2
ik = det(Sk)

1

p (xi − vk)tS−1
k (xi − vk). (14)

Equation (13) can be obtained by imposing a constant volume to each clus-
ter and using Lagrange multipliers, except for the normalization by the factor∑n

i=1 uβ
ik (which could be omitted). Additionally, Gustafson and Kessel show

that the adaptation formulas of FCM for the membership degrees and the cen-
ters remain valid as they do not depend on the metric.

2.3. ECM algorithm

Recently, Masson and Denœux proposed a credibilistic version of Davé’s al-
gorithm [20] by replacing the fuzzy partition matrix U with a more general kind
of partition M called a credal partition. In this framework, partial knowledge
regarding the class membership of an object is represented by a mass function
on the set Ω of possible classes. Thus, belief mass may be given to any subset
A of Ω (any set of classes), and not only to singletons of Ω. This representation
enables to model a wide variety of situations ranging from complete ignorance
to full certainty, as illustrated in Example 1.

Example 1. Let us consider a collection of four objects that need to be classified
into two classes. A credal partition is presented in Table 1. The class of the
first object is known with certainty, whereas the class of the second object is
completely unknown. We have probabilistic knowledge of the actual class of the
third object. The last object is considered to be an outlier, which is represented
by allocating the whole unit mass to the empty set.
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Table 1: Example of a credal partition

A m1(A) m2(A) m3(A) m4(A)
∅ 0 0 0 1

{ω1} 1 0 0.3 0
{ω2} 0 0 0.7 0

Ω 0 1 0 0

A credal partition can thus be seen as a general model of partitioning:

• when each mi is a certain bba, then M defines a conventional, crisp par-
tition of the set of objects; this corresponds to a situation of complete
knowledge;

• when each mi is a Bayesian bba, then M specifies a fuzzy partition;

• when the focal elements of all bbas are restricted to be singletons of Ω or
the empty set, a partition with a noise cluster as in the NC algorithm is
recovered.

ECM is one of the algorithms proposed to derive a credal partition from data.
Let mij denote the degree of belief that object xi belongs to the subset Aj ⊆ Ω.
Deriving a credal partition implies determining for each object xi the quantities
mij = mi(Aj) ∀Aj 6= ∅, Aj ⊆ Ω in such a way that a low (resp., high) value of
mij is found when the distance dij between xi and Aj is high (resp., low). The
distance dij between an object and a set of classes Aj is defined as follows. Like
in fuzzy partitioning, each class ωl is represented by a center vl ∈ R

p. Then,
for each subset Aj ⊆ Ω, Aj 6= ∅, a centroid vj is calculated as the barycenter of
the centers associated to the classes in Aj :

vj =
1

|Aj |

c∑

l=1

sljvl, (15)

with

slj =

{
1 if ωl ∈ Aj ,
0 else.

(16)

The distance dij between xi and the focal set Aj may then be defined by:

dij = ||xi − vj ||. (17)

The ECM algorithm searches for the M and V matrices that minimize a criterion
similar to that of the NC algorithm:

JECM(M, V ) =

n∑

i=1

∑

Ak 6=∅

|Ak|
αmβ

ikd2
ik +

n∑

i=1

ρ2mβ
i∅, (18)
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subject to : ∑

k/Ak⊆Ω,Ak 6=∅

mik + mi∅ = 1 ∀i = 1, n, (19)

where mi∅ denotes the mass of the object xi allocated to the empty set. The
empty set is interpreted as a noise cluster; thus, it is dealt with separately. The
parameter ρ represents the distance of all the objects to the empty set. An
additional weighting coefficient |Ak|α is introduced to penalize the allocation of
belief to subsets with high cardinality, the exponent α allowing us to control
the degree of penalization.

As in FCM or NC, the credal partition is found by performing an iterative
optimization with the alternate update of the masses and the centroids. The
necessary condition of optimality for M gives the following adaptation rule for
the mass functions:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij

∑
Ak 6=∅ |Ak|−α/(β−1)d

−2/(β−1)
ik + ρ−2/(β−1)

i = 1, n ∀Aj 6= ∅ (20)

and
mi∅ = 1 −

∑

Aj 6=∅

mij i = 1, n. (21)

Note that these update equations are very similar to those of the NC algorithm
except that there are 2c values mij to compute instead of c+1 fuzzy membership
degrees uij . A more complex update rule is found for the centroids, since the
optimality conditions lead to the resolution of a linear system at each step of
the optimization process. Let B be a matrix of size (c × p) defined by:

Blq =

n∑

i=1

xiq

∑

Aj 6=∅

|Aj |
α−1mβ

ijslj =

n∑

i=1

xiq

∑

Aj∋ωl

|Aj |
α−1mβ

ij l = 1, c q = 1, p,

(22)
and H a matrix of size (c × c) given by:

Hlk =
∑

i

∑

Aj 6=∅

|Aj |
α−2mβ

ijsljskj =
∑

i

∑

Aj⊇{ωk,ωl}

|Aj |
α−2mβ

ij k, l = 1, c.

(23)
With these notations, V is solution of the following linear system:

HV = B, (24)

which can be solved using a standard linear system solver. The way of deriving
equations (20) to (24) from the optimality conditions of the problem is detailed
in reference [20]. Note that, in practice, the resolution of system (24) is per-
formed columnwise: each column of V is the solution of a linear system of c
equations and c unknowns. As FCM and its variants, the algorithm starts with
an initial guess for either the credal partition M or the cluster centers V and
iterates until convergence, alternating the optimization of M and V .
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2.4. Interpreting a credal partition

As underlined in [20], a credal partition is a rich representation that carries
a lot of information about the data. In [20], various tools helping the user to
interpret the results of ECM were suggested. First, a credal partition can be
converted into classical clustering structures. For example, a fuzzy partition
can be recovered by computing the pignistic probability BetPi({ωk}) induced
by each bba mi and interpreting this value as the degree of membership of object
i to cluster k.

Another interesting way of synthesizing the information is to assign each
object to the subset of classes with the highest mass. In this way, one obtains
a partition in at most 2c groups, which is referred to as a hard credal partition.
This hard credal partition allows us to detect, on the one hand, the objects that
can be assigned without ambiguity to a single cluster and, on the other hand,
the objects lying at the boundary of two or more clusters.

It was also proposed to characterize each cluster by two sets of objects. The
lower approximation ωL

k of a cluster ωk is the set of objects that belong with
no doubt to cluster ωk: it is the set of objects assigned to the singleton {ωk} in
the hard credal partition; the upper approximation ωU

k gathers the objects that
could possibly belong to cluster ωk: it is the set of objects assigned to subsets
of Ω containing ωk.

Example 2. Let us consider the credal partition presented in Table 1. The
corresponding pignistic probabilities (using Yager’s normalization) are given in
Table 2. Lower and upper estimations of the clusters are: ωL

1 = {x1}, ωL
2 =

{x3}, ωU
1 = {x1,x2}, ωU

2 = {x3,x2}. Object x4 is considered as an outlier.

Table 2: Pignistic probabilities for the credal partition of Table 1

x1 x2 x3 x4

BetP ({ω1}) 1 0.5 0.3 0.5
BetP ({ω2}) 0 0.5 0.7 0.5

3. ECM with constraints

3.1. Expression of the constraints

Let xi and xj be two objects associated with mass functions mi and mj .
A mass function regarding the joint class membership of both objects may be
computed from mi and mj in the Cartesian product Ω2 = Ω × Ω. This mass
function, denoted mi×j , is the combination of the vacuous extensions of mi and
mj [25]. As shown in [10], it can be written as:

mi×j(A × B) = mi(A) mj(B) A, B ⊆ Ω, A 6= ∅, B 6= ∅, (25)

mi×j(∅) = mi(∅) + mj(∅) − mi(∅) mj(∅). (26)
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From mi×j , we can compute the plausibility that the two objects xi and xj

belong or not to the same class. In Ω2, the event “Objects xi and xj belong to
the same class” corresponds to the subset θ = {(ω1, ω1), (ω2, ω2), . . . (ωc, ωc)},
whereas the event “Objects xi and xj do not belong to the same class” corre-
sponds to its complement θ. The corresponding plausibilities are the following:

pli×j(θ) =
∑

{A×B⊆Ω2 | (A×B)∩θ 6=∅}

mi×j(A × B) (27)

=
∑

A∩B 6=∅

mi(A) mj(B), (28)

and

pli×j(θ) = 1 − mi×j(∅) − beli×j(θ), (29)

= 1 − mi×j(∅) −
∑

{A×B⊆Ω2 | ∅6=(A×B)⊆θ}

mi×j(A × B) (30)

= 1 − mi×j(∅) −
c∑

k=1

mi({ωk}) mj({ωk}). (31)

Example 3. Let us consider a new collection of four objects to be classified
into two classes. A credal partition, which expresses certain knowledge about
the membership of the objects, is given in Table 3. Table 4 gives the mass func-
tions of the joint membership of x1 with the three other objects. The associated
plausibilities plΩ×Ω(θ) and plΩ×Ω(θ) are given in Table 5.

Table 3: Credal partition to express constraints

A m1(A) m2(A) m3(A) m4(A)
∅ 0 0 0 0

{ω1} 1 1 0 0
{ω2} 0 0 1 0

Ω 0 0 0 1

This simple example shows how the joint membership of two objects may be
represented using the plausibilities plΩ×Ω(θ) and plΩ×Ω(θ). In simple terms, the
relevant information in Table 5 is contained in the zeros of these plausibilities.
For example, nothing can be said about the joint membership of object x1 and
x4, as both of these plausibilities are equal to 1. On the contrary, the fact
that plΩ×Ω

1×2 (θ) = 0 indicates that (x1 and x2) are certainly in the same cluster.

Equivalently, the null value of the plausibility plΩ×Ω
1×3 (θ) express the impossibility

that x1 and x3 belong to the same class. These relationships will be used in
the next section to propose a new formulation of ECM integrating pairwise
constraints on instances.
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Table 4: Masses of joint membership

F = A × B m1×2(F ) m1×3(F ) m1×4(F )
{ω1} × {ω1} 1 0 0
{ω1} × {ω2} 0 1 0
{ω1} × Ω 0 0 1
{ω2} × {ω1} 0 0 0
{ω2} × {ω2} 0 0 0
{ω2} × Ω 0 0 0
Ω × {ω1} 0 0 0
Ω × {ω2} 0 0 0
Ω × Ω 0 0 0

Table 5: Plausibilities for the events θ and θ

F pl1×2(F ) pl1×3(F ) pl1×4(F )
θ 1 0 1

θ 0 1 1

3.2. Objective function of CECM

Let us now assume that the credal partition is unknown and that we are
given some pairwise constraints. As explained in the introduction, we consider
that these constraints are must-link or cannot-link constraints. Let M denote
the set of pairs of objects constrained by a must-link and C the set of pairs of
objects constrained by a cannot-link. One has to seek for a credal partition that
reflects both the similarities computed from the data and the constraints. A
natural requirement is that pli×j(θ) be as low as possible if (xi,xi) ∈ C. In the
same way, (xi,xi) ∈ M implies that pli×j(θ) should be as low as possible. To
achieve this goal, we suggest to integrate penalty terms into the ECM criterion
and we propose to minimize the following objective function:

JCECM(M, V ) = JECM(M, V ) +
γ

|M|

∑

(xi,xj)∈M

pli×j(θ) +
η

|C|

∑

(xi,xj)∈C

pli×j(θ),

(32)
such that the constraints (19) are respected. The second and third terms repre-
sent, respectively, the cost of violating the must-link the cannot-link constraints.
The coefficients γ and η control the tradeoff between the objective function of
ECM and the constraints.

3.3. Optimization

As in FCM, NC and ECM, we propose an alternate optimization scheme
in order to fix the partition matrix M and the centroid matrix V . First, we
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note that the two penalty terms added to the objective function of ECM do
not depend on the cluster centroids. The same update scheme for the centroids
(equations (22) to (24)) can thus be used in CECM.

Generally, the problem is much more complex for the belief masses, and a
direct update equation of the mij from the optimality conditions like (20) is
no longer possible. However, if we fix β = 2 then the objective function (32)
becomes:

JCECM(M, V ) =

n∑

i=1

∑

Ak 6=∅

|Ak|
αm2

ikd2
ik +

n∑

i=1

ρ2m2
i∅

+
γ

|M|

∑

(xi,xj)∈M

pli×j(θ) +
η

|C|

∑

(xi,xj)∈C

pli×j(θ). (33)

Because of Equation (29), Equation (33) is equal to:

JCECM(M, V ) =

n∑

i=1

∑

Ak 6=∅

|Ak|
αm2

ikd2
ik +

n∑

i=1

ρ2m2
i∅ −

γ

|M|

∑

(xi,xj)∈M

mi×j(∅)

−
γ

|M|

∑

(xi,xj)∈M

beli×j(θ) +
η

|C|

∑

(xi,xj)∈C

pli×j(θ) + γ. (34)

Note that the last term of equation (34), which is constant, will be omitted
in the rest of the paper. It can be seen that the objective function is, in that
case, quadratic with respect to the mij . To make this point clearer, let mi

denote the vector of size 2c of the masses related to object xi. Let Φi = (φi
kl)

be n diagonal matrices (i = 1, n) of size (2c × 2c) defined by:

φi
kl =






ρ2 if Ak = Al = ∅,
d2

ik|Ak|α if k = l and Ak 6= ∅,
0 else.

(35)

Let us also define two matrices ∆M = (δMkl ) and ∆C = (δMkl ) of size (2c × 2c) as
follows:

δMkl =






1 if Ak = ∅ or Al = ∅,
1 if Ak = Al and |Ak| = |Al| = 1,
0 else.

(36)

δCkl =

{
1 if Ak ∩ Al 6= ∅
0 else.

(37)

With these notations, JCECM may be rewritten as follows:

JCECM(M, V ) =

n∑

i=1

mt
iΦ

imi−
γ

|M|

∑

(xi,xj)∈M

mt
i∆

Mmj +
η

|C|

∑

(xi,xj)∈C

mt
i∆

Cmj ,

(38)
As we have linear constraints, a classical optimization method [30] can be used
and the convergence is insured in a reasonable time. The overall procedure is
summarized in Algorithm 1.
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Algorithm 1 CECM with an Euclidean metric

Input: Number c of desired clusters, n objects x1, ...,xn, set of cannot-link
C, set of must-link M
Output: Credal partition matrix M , centroid matrix V
Random Initialization of V
repeat

1) Calculate the new masses by solving the quadratic programming problem
defined by (38) subject to (19).
2) Calculate the new centroids by solving the linear system defined by
equations (22) to (24).

until No significant change in V between two successive iterations

4. CECM with an adaptive metric

4.1. Model

In the ECM algorithm, the distance d2
ik between the object xi and the cen-

troid vk is a Euclidean distance. Classes are then supposed to be spherical.
However, the use of a Mahalanobis distance may be interesting in case of ellip-
tical clusters. Using an adaptive metric can be highly desirable when using con-
straints, in particular when these constraints contradict a Euclidean model. To
modify the previous algorithm, we follow an approach inspired from Gustafson
and Kessel [13] and well described in [14]. Let Sl denote a (p × p) matrix asso-
ciated to cluster ωl (l = 1, c) inducing a norm ||x||2Sl

= xtSlx. Using the same

approach that we used for the centroids, we compute the matrix Sj associated
with a non singleton Aj by averaging the matrices associated to the classes
ωk ∈ Aj :

Sj =
1

|Aj |

c∑

l=1

sljSl, ∀Aj ⊆ Ω, Aj 6= ∅. (39)

The distance d2
ij between xi and any set Aj 6= ∅ is then defined by:

d2
ij = ||xi − vj ||

2
Sj

= (xi − vj)
tSj(xi − vj). (40)

The new criterion to be minimized thus becomes:

JCECM(M, V, S1, · · · , Sc) =

n∑

i=1

∑

Ak 6=∅

|Ak|
αm2

ik||xi − vj ||
2
Sj

+

n∑

i=1

ρ2m2
i∅

+
γ

|M|

∑

(xi,xj)∈M

pli×j(θ) +
η

|C|

∑

(xi,xj)∈C

pli×j(θ). (41)

4.2. Optimization

We first note that the minimization of (41) with respect to the masses is
independent of the metric, so that the way of deriving the masses by a con-
strained quadratic optimization is unchanged. In their algorithm, Gustafson
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and Kessel showed that the update equations of FCM for the cluster centers
were not affected by the introduction of a metric associated to each cluster. On
the contrary, in CECM, the determination of the centers takes explicitly into
account the metric, as shown below.

4.2.1. Optimization with respect to the cluster centers

We first consider that M and the matrices Sl (l = 1, c) are fixed. The mini-
mization of JCECM with respect to V is an unconstrained optimization problem.
The partial derivatives of JCECM with respect to the centers are given by:

∂JCECM

∂vl
=

n∑

i=1

∑

Aj 6=∅

|Aj |
αm2

ij

∂d2
ij

∂vl
l = 1, c. (42)

∂d2
ij

∂vl
= 2(slj)Sj(xi − v̄j)(−

1

|Aj |
) l = 1, c. (43)

From (42) and (43) we thus have:

∂JCECM

∂vl
= −2

n∑

i=1

∑

Aj 6=∅

|Aj |
α−1m2

ijsljSj(xi − v̄j) (44)

= −2

n∑

i=1

∑

Aj 6=∅

|Aj |
α−1m2

ijsljSj(xi −
1

|Aj |

∑

k

skjvk) l = 1, c. (45)

Setting these derivatives to zero gives l equations in vk which can be written
as:
∑

i

∑

Aj 6=∅

|Aj |
α−1m2

ijsljSjxi =
∑

k

∑

i

∑

Aj 6=∅

|Aj |
α−2m2

ijsljskjSjvk l = 1, c,

(46)
or, equivalently:

∑

i

∑

Aj∋ωl

|Aj |
α−1m2

ijSjxi =
∑

k

∑

i

∑

Aj⊇{ωk,ωl}

|Aj |
α−2m2

ijSjvk l = 1, c. (47)

Let F(l,i) denote the (p × p) matrix:

F(l,i) =
∑

Aj∋ωl

|Aj |
α−1m2

ijSj l = 1, c i = 1, n, (48)

and G(l,k) denote the (p × p) matrix:

G(l,k) =
∑

i

∑

Aj⊇{ωk,ωl}

|Aj |
α−2m2

ijSj k, l = 1, c. (49)
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Next, we form, from these two (p × p) matrices, two new matrices F and G, of
size (cp × np) and (cp × cp), respectively:

F =





F(1,1) F(1,2) · · · F(1,n)

F(2,1) F(2,2) · · · F(2,n)

...
...

. . .
...

F(c,1) F(c,2) · · · F(c,n)




G =





G(1,1) G(1,2) · · · G(1,c)

G(2,1) G(2,2) · · · G(2,c)

...
...

. . .
...

G(c,1) G(c,2) · · · G(c,c)





(50)
Let us stack all object xi in a same vector X of size (np× 1) and rearrange

matrix V in the form of a vector of size (cp × 1) such that:

X =




x1

...
xn



 V =




v1

...
vc





With all these notations, vector V is solution of the following linear system:

GV = FX. (51)

We see that, instead of solving p system of c unknowns as in the case of a
Euclidean metric, we have to solve a unique system of cp equations and cp un-
knowns. This higher complexity is the price to pay for an automatic adaptation
of the metric.

4.2.2. Optimization with respect to the metrics Sl

We now consider that M and V are fixed and we want to determine the
matrices Sl. We follow the same line of reasoning as Gustafson and Kessel.
In order to avoid the degenerate solution consisting of matrices Sl with zero
entries, we impose that the clusters have a constant volume using the constraints
det(Sl) = 1 for all l = 1, c. To solve the constrained minimization problem with
respect to S1, · · · , Sc, we introduce c Lagrange multipliers λi and write the
Lagrangian:

L(S1, · · · , Sc, λ1, · · · , λc) = JCECM(M, V ) −
c∑

k=1

λk (det(Sk) − 1) (52)

We recall that the definition of the distance of an object xi to a focal set Aj is:

d2
ij = (xi − vj)

tSj(xi − vj) = (xi − vj)
t

(
1

|Aj |

c∑

k=1

skjSk

)
(xi − vj). (53)

Starting from the fact that the derivatives of xtAx and det(A) with respect
to a symmetric matrix A are xxt and det(A)A−1 respectively, we obtain the
following derivative of L with respect to matrix Sl:

∂L

∂Sl
=
∑

i

∑

Aj 6=∅

m2
ij |Aj |

α−1slj(xi−vj)(xi−vj)
t−λl det(Sl)S

−1
l l = 1, c. (54)
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The derivatives with respect to the Lagrange multipliers lead to the constraints
det(Sl) = 1 for all i. Let Σl denote the following matrix:

Σl =
∑

i

∑

Aj∋ωl

m2
ij |Aj |

α−1(xi − vj)(xi − vj)
t l = 1, c. (55)

Note that Σl can be considered as the analog in the evidential framework of the
fuzzy covariance matrix. From (54), we have:

Σl = λlS
−1
l l = 1, c, (56)

and, thus
ΣlSl = λlI l = 1, c, (57)

where I denote the (p× p) identity matrix. Taking the determinant of this last
equation leads to:

det(ΣlSl) = det(Σl) det(Sl) = det(Σl) = λp
l l = 1, c. (58)

It follows that
λl = det(Σl)

1

p l = 1, c. (59)

Replacing λl by its expression and using (56), we finally obtain:

Sl = det(Σl)
1

p Σ−1
l l = 1, c. (60)

Note that Σl is invertible since it is symmetric and positive definite. Indeed,
each (xi −vj)(xi −vj)

t is symmetric, positive and semi-definite, and so is their
weighted sum.

The overall CECM procedure with an adaptive metric is summarized in
Algorithm 2.

Algorithm 2 CECM with an adaptive metric

Input: Number c of desired clusters, n objects x1, ...,xn, set of cannot-link
C, set of must-link M
Output: Credal partition matrix M , centroid matrix V , set of matrices Sl

l = 1, c
Random Initialization of V
repeat

1) Calculate the new masses by solving the quadratic programming problem
defined by (38) subject to (19).
2) Calculate the new centroids by solving the linear system defined by
equations (48) to (51).
3) Calculate the new matrices Sl, l = 1, c using (55) and (60).

until No significant change in V between two successive iterations
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5. Experimental results

5.1. Datasets

The performances of CECM were evaluated on three data sets. In order
to illustrate the interest of introducing constraints, we created a synthetic
dataset, represented in Figure 1. It consists in two classes of patterns in a
two-dimensional space. In each class, patterns were generated according to a
mixture of two Gaussians, with means (0, 0) and (0, 7) in the first class, and
(7, 0) and (7, 7) in the second one. All the Gaussians have a common covariance
matrix 2 Id2, where Id2 denotes the identity matrix in R2. In the two classes,
the proportions of the Gaussians are the same: 100 points were drawn from
each.

−4 −2 0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

10

12

1 1

1
1

1

1

1

1

1

1
1

1

1
11

1

1

1

1

1

1

1

1
1

11 1

1
1 1

1

1

1

1

11

11

1

11
1

11

1

1

1

1

11

1

1

1
11

1

1

1

1

1

1 1
1 11

1

1
1 1

1

1 1
1

1
1 1

1

1

1

1

1

1 1

1
1 1

1

1 1

1 1
1

11

1 1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2
2 2

2
2

2

2 2

2

2

2

2
2

2

2

22

2

2

2

2
2

2

2

2

22
2

2

2

2

2

2
2

2

2

2

22
2

2

2

2

2

2

2

2
2

2

2
22

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1 1

1

1111
1

1

11

1

1

1

1

1

1

1

1

1

1

1
1 1

1
1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1 1

1

1

1
11

1

1

1

1

1 1
11

1
1

1

1
1

1
1

1
1

1
1

1

1

1

1

1 1

1

1

1

1

1

1

1

1
1

11

1

2
2

2

2

2

2

2

2

2

2
22

2

2

2
2 2

2

2

2

2

2
2

2
2

2

2 2
2

2
22

2

2

2
2

2

2

2

2

2

2

2
2

2

2

2 2

2

2

2

2

2

2
2 2

2

2

2

2 2
2

2

2

22 2

22

22 2

2

2

2 2
2

2
2

2

2
2

22

2
2

2

2

2

2

2
2 2

2

2

2

22

2

2

Figure 1: Synthetic data set

The Iris data set is composed of three classes in a four-dimensional space.
Each one contains fifty samples. We stress here that only the setosa class is
linearly separable from the others. Moreover, classes have non-spherical dis-
tributions, which suggests that the Mahalanobis distance may be best suited
than the Euclidean one to process these data. In the Ionosphere data set,
351 patterns are separated into two classes of 225 patterns and 126 patterns,
respectively. Each pattern is described by 34 attributes. Both the Iris and Iono-
sphere data sets may be downloaded from the UCI Machine Learning Repository
(http://www.ics.uci.edu/˜mlearn).
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5.2. Comparing two partitions

In order to evaluate the accuracy of a clustering algorithm, the crisp partition
P̂ found may be compared to some reference partition P . Remark that this task
is not trivial. Since the label of each cluster is arbitrary and does not reflect
any ground truth (unlike in supervised classification), two identical partitions
may label differently same groups of data.

To overcome this difficulty, various methods have been proposed to compute
a degree of similarity between P and P̂ . Let a (respectively, b) be the number
of pairs of objects simultaneously assigned to identical classes (respectively,

different classes) in P and P̂ . The Rand Index (RI) estimates the degree of
global compatibility between P and P̂ by:

RI(P, P̂ ) =
2(a + b)

n(n − 1)
. (61)

Remark that with CECM, P̂ was determined by assigning each object to the
cluster with maximal pignistic probability after convergence of the algorithm.

5.3. Choice of the parameters

We address here the choice of the parameters used to run the various ex-
periments. First of all, the number c of classes was defined by the user. In
order to obtain a significant level of non-specificity, so that the credal partition
computed differs from a fuzzy partition, parameter α was set to 1. The values of
parameter ρ differ according to the data processed; therefore, they will be indi-
cated throughout the presentation of the results. To give the same importance
to must-link and cannot-link constraints, we set γ = η.

5.4. Choice of the constraints

Constraints were defined using two different methods. Random selection
consists in randomly selecting two patterns in the dataset. Then, the true
relationship between these points is identified using the true partition of the
data. This technique allows us to introduce a high number of constraints, and
thus to study the behaviour of the algorithm in various situations.

However, in some applications, the constraints may not always be available
a priori, but an oracle (a user) may be available to provide the constraints.
This scheme, where the system queries the oracle to obtain information is called
active learning [1, 6]. It is trivial to notice that, among the possible pairwise
constraints, some of them are informative with respect to the clustering problem,
while some of them are useless, as illustrated in Figure 2. Additionally, several
authors have observed that a constrained clustering approach with a bad choice
of pairs can deteriorate the clustering performances [9, 26]. The goal of an
active learning is thus to select the pairwise constraints which are the most
informative about the underlying structure of the objects, so that the clustering
performance can be improved with as few queries as possible. We propose to
introduce constraints incrementally by alternatively running CECM, selecting
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(a) (b) (c)

Figure 2: Pairwise constraints patterns for a dataset (a): some are useless (b) and some are
informative (c) to lead the algorithm towards a desired solution.

pairs of objects, and asking an expert to identify the nature of the corresponding
constraints, until a specified number of constraints is reached. We use the credal
partition obtained with CECM to select the most suitable pairs of objects. These
pairs are selected according to the following requirements:

• The first object must be classified with a high degree of uncertainty,

• The second object must be classified with a high degree of certainty.

Indeed, if the uncertainty about the membership of the two objects is low, the
constraint may be non informative and conversely, if the uncertainty regarding
the classification of both objects is high, the constraint may lead to misclassify
both objects. Different ways to find such objects thanks to the credal partition
or to the centroids can be considered. We propose a strategy that proved ex-
perimentally to be efficient. The points for which the uncertainty is high are
the points assigned in the hard credal partition (see Section 2.4) to focal sets of
cardinality greater than 1. In particular, points associated to focal sets Aj such
that Aj = 2 are likely to be located at the boundary of two clusters. Thus, for
the selection of the first object, we propose to select the point associated to the
highest mass allocated to focal sets of cardinality equal to 2. For the second
object, we pick up the nearest point from one of the centroids. The user is then
provided with this pair of points, and enters either a must-link or a cannot-link
constraint.

5.5. Results on synthetic and real data

5.5.1. Interest of adding constraints

We first illustrate the interest of introducing constraints using the synthetic
data set. The ECM algorithm was run using a Euclidean distance, with ρ2 =
100. The credal partition obtained shows a diagonal boundary between the two
classes. The direction of the boundary (from upper left to lower right, or from
lower left to upper right) depends on the initialization of the centroids. Figure 3
represents one of the credal partitions obtained. Here, each point is associated
with the non-empty subset A ⊆ Ω that received the highest amount of belief
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mass. The two large crosses represent the centroids obtained after convergence.
The RI is equal to 0.56.
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Figure 3: Hard credal partition obtained using ECM with a Euclidean metric.

The Euclidean distance implicitly supposes that the classes are spherical,
which is obviously not the case for this data set. If we use the Mahalanobis
distance instead (with the same parameter values as before), we obtain either
an horizontal or a vertical boundary between the classes. Figure 4 shows one
of the solutions obtained, where the boundary is horizontal. In this case, the
credal partition does not correspond to the true partition of the data, and the
RI is equal to 0.5.

The add of a small number of randomly chosen constraints allows us to lead
the algorithm towards the desired solution. For example, by using only ten
constraints, CECM finds the desired classes, as it is shown in Figure 5. Here,
a solid line segment between two points corresponds to a must-link constraint
between two objects and a dashed line segment between two points corresponds
to a cannot-link constraint.

5.5.2. Influence of the penalty coefficients γ and η

As pointed out in Section 5.3, choosing adequate values for parameters γ
and η may be difficult. If the values are too high, satisfying the constraints
prevails over finding compact classes. Conversely, too low values may lead to
ignoring the constraints. Figure 6 shows the average RI, obtained on the Iris
data set using an adaptive metric, plotted against the number of constraints.
For each number of constraints, this average was computed over 100 different
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Figure 4: Hard credal partition obtained using ECM with an adaptive metric.
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Figure 5: Hard credal partition obtained using CECM with an adaptive metric and 10 con-
straints; solid lines represent must-link constraints, and dashed lines cannot-link constraints.
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classifications obtained with CECM using an adaptive metric. Remark that the
respective rates of must-link and cannot-link constraints are randomly chosen for
each run of the algorithm. Unsurprisingly, it may be noticed that the accuracy
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Figure 6: Average Rand Index as a function of the number of constraints, Iris data set.

of the classification increases with the number of constraints introduced. Note
that the results obtained on the Iris data set are similar to those presented in
[12].

Throughout the experiments, we remarked that high penalty coefficients
may sometimes yield worse results than low coefficients when the number of
constraints is low, but better results when the number of constraints increases.
For example, it may be noticed in Figure 6 that the results obtained with
γ = η = 1/100 are better or equal to those obtained with γ = η = 1, when
up to 170 pairwise constraints are taken into account. For 180, 190 or 200 con-
straints, the parameter values γ = η = 1 give the best results. This behaviour
may be explained as follows. It is likely that a small set of constraints covers
scarce regions in the input space. Thus, enforcing these constraints introduce
inconsistencies in the partition. Indeed, the mass functions associated with the
constrained points may be modified, so that the class centers move in undesired
directions or on inadequate distances. If the number of constraints increases,
the coverage of the input space will likely increase as well. If instead few con-
straints are available and the values of γ and η are low, finding compact classes
may prevail over respecting the constraints, yielding again a credal partition
with good consistency. In particular, this explains why highly penalizing the
violation of constraints decreases the accuracy of the partition when few con-
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straints are available. This well-known behaviour has often been observed on
constrained algorithms derived from the hard c-means algorithm [26, 8].

5.5.3. Random selection of constraints and active learning

Here, we examine the behaviour of the algorithm and make a comparison
between an active learning scheme and a random constraint selection method.
The experiments were conducted on the Iris and Ionosphere data sets. We used
parameter values γ = η = 1 and ρ2 = 1000 for both data sets.

Figures 7 and 8 show the evolution of the average RI (computed over 100
trials) according to the number of pairwise constraints, for both data sets. The
pairwise constraints were randomly selected. The average RI is computed both
over all objects and over unconstrained objects.
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Figure 7: Average Rand Index as a function of the number of randomly selected constraints
(Iris data set).

We remark that the RI computed over unconstrained objects increases with
the number of constraints. Therefore, introducing constraints allows us to guide
the algorithm towards a better solution, and does not only improve the classi-
fication of constrained objects. Remark that the RI computed over constrained
objects may increase with the number of constraints. The reason is that a
constraint involving a data point misclassified with a high degree of belief may
have a negative effect on the classification. Indeed, in this case, the centers of
the classes may move in undesired directions, and the other constrained point,
previously well classified, may switch to the wrong class.

Active learning, being a way of introducing constraints on carefully selected
points, seems a good way of avoiding such a situation. Figures 9 and 10 compare
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Figure 8: Average Rand Index as a function of the number of randomly selected constraints
(Ionosphere data set).

the active learning scheme with random selection of constraints. Overall, active
learning allows faster convergence than does random selection of constraints. In
the case of the Iris dataset, the optimum is obtained with 40 constraints when
using active learning, whereas it is still not obtained with 200 constraints when
using random selection. Remark that active learning may be outperformed by
random selection, especially with a low number of constraints. In this case,
active learning tends to introduce constraints on data that belong to specific
regions of the input space. As explained in Section 5.5.2, this may result in
undesired moves of the class centers. As a consequence, other data points whose
distances to the center increase may switch to other classes.

5.6. Application to medical image segmentation

The interest of CECM will now be illustrated using an example in medical
imaging taken from [5]. An image of a pathological brain was acquired using
magnetic resonance imaging. It is represented in Figure 11. In this image, ac-
cording to the gray levels of the pixels, three main areas may be distinguished:
the brightest area corresponds to the pathological area, the dark gray to normal
brain tissues and intermediate gray levels correspond to ventricles and cere-
brospinal fluid. The aim was to isolate the tumor from the other parts of the
brain by looking for a partition into c=2 clusters. To make the computations
tractable, the gray levels of the 156x141 pixels of the original image were quan-
tified into 400 prototypes using a basic learning vector quantization algorithm
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Figure 9: Rand Index obtained using Active learning, and average Rand Index obtained using
randomly selected constraints, as a function of the number of constraints (Iris data set).
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Figure 10: Rand Index obtained using Active learning, and average Rand Index obtained
using randomly selected constraints, as a function of the number of constraints (Ionosphere
data set).
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Figure 11: Original image of the brain; the bright area corresponds to a tumor; the dark gray
one, to normal brain tissues, and the intermediate gray one to ventricles and cerebrospinal
fluid.

[16]. The clustering was performed on this set of prototypes and the pixels in
the image were assigned to the class of the nearest prototype.

Starting from the gray levels of the pixels (rescaled between 0 and 1), ECM,
with c = 2, α = 2, and ρ2 = 10, finds the hard credal partition represented in
Figure 12. White and light grays represent two clusters and the darker gray is
given to pixels assigned to Ω in the hard credal partition. In a next experiment,
imitating what could be done by an expert, we introduced constraints as indi-
cated in Figure 13. White areas corresponds to pixels related by a must-link and
these two areas are mutually linked by a cannot-link. The hard credal partition
obtained by applying CECM with the adaptive metric (with γ = η = 0.01 and
α = 2, ρ2 = 10) is shown in Figure 14. It may be seen that the constraints
made it possible to raise the indetermination concerning the pixels allocated to
Ω and thus to properly isolate the pathological area. As a matter of comparison,
the partitions computed from the pignistic probabilities obtained by ECM and
CECM are given in Figure 15.

6. Conclusion

In this paper, we addressed the problem of introducing constraints in a
classification task. Our work is based within the theoretical framework of belief
functions. In this framework, the ECM algorithm computes a credal partition
of the data: each pattern is associated with a belief function that describes its
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Figure 12: Hard credal partition obtained from ECM with an Euclidean metric (white: ω1,
light gray: ω2, dark gray: Ω).

Figure 13: Must-link constraints (white areas) and cannot-link constraint (dashed line) intro-
duced by an expert.
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Figure 14: Hard credal partition obtained from CECM with an adaptive metric (white: ω1,
light gray: ω2, dark gray: Ω).

membership to the classes. Our contribution is twofold. We introduced the
Mahalanobis distance in the ECM algorithm, in order to handle non-spherical
classes. We also presented an extension of the ECM algorithm, called CECM,
which takes additional information into account in the clustering process. This
information takes the form of pairwise constraints between the data: a must-link
constraint indicates that two patterns must be classified into the same class; a
cannot-link constraint, that they must be classified into different classes. We
proposed an active-learning procedure, in which an expert is questioned about
the relationships between pairs of data. Selecting these pairs is obviously a
crucial issue for introducing relevant constraints. In our algorithm, the selection
step may be easily conducted using the semantics of belief functions.

Our experiments show that introducing constraints improves the accuracy
of the partition obtained, by guiding the algorithm towards desired solutions.
When complex models are used, such as the Mahalanobis metric for computing
distances between data, constraints allow us to compute parameter estimates
that better fit the problem considered. We also showed that the number of
constraints required to obtain an accurate clustering of the data need not be
huge. In particular, much fewer constraints were necessary to reach the opti-
mal partition when using our active-learning procedure than when constraints
were randomly chosen. We also studied the influence of the constraints on the
consistency of the solution obtained. Finally, we demonstrated the interest of
our approach by on a medical image segmentation problem. The aim was to
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Figure 15: Partitions computed from the pignistic probabilities obtained with ECM (left) and
CECM (right).

process the image of a pathological brain in order to detect a tumor. The mere
application of the ECM algorithm did not lead to a satisfactory solution, as
several parts of the image are associated with a high degree of indetermination.
However, introducing a few constraints made it possible to clear up the ambigu-
ity between tumoral and healthy cells and to provide an accurate segmentation
of the image.

This research may be extended in several directions. Some authors [18] pro-
posed to add soft constraints rather than crisp ones. A soft constraint may
be seen as a relationship between two objects, accompanied with a degree of
certainty that this relationship holds. The interest of adding such constraints
is twofold. First, one may hope to reduce the negative effect of a small set of
constraints on the accuracy of the clustering. Furthermore, the problem of the
consistency between the constraints themselves may be tackled to some extent.
Besides, the interest of our approach may be illustrated on real-world applica-
tions where background knowledge may be provided by experts. In particular,
our active-learning scheme could be applied to medical image segmentation. In-
deed, a physician may easily label parts of an image as homogeneous regions,
or instead require that two regions be classified into different classes.
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