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Abstract—Deep neural networks are important for a wide
range of scientific and industrial processes. However, a classical
discriminative model always makes a classification with respect to
the probabilities allocated to the training labels, even when the
sample is out of the domain. Thus, it is of interest to assign
uncertainty to a model prediction to avoid such a situation.
Fortunately, there are many existing methods for dealing with
this kind of problem, one branch of which involves combining
neural networks with subjective logic (SL). Based on previous
works, we propose a new method called subjective-logic-based
uncertainty estimation (SLUE) that can take the base rate distri-
bution explicitly into account to refine the Dirichlet distribution
parameters and guide the model training. Experiments were
performed on several public datasets and additional adversarial
datasets. Compared with existed methods, SLUE reached better
uncertainty assessment performance (15% improvement in terms
of % max entropy) as well as comparable prediction accuracy
performance.

Index Terms—Base Rate Distribution, Uncertainty, Out-of-
domain Detection, Subjective Logic

I. INTRODUCTION

Currently, deep neural networks have a pivotal role in
various applications of human endeavor. It possesses an ad-
mirable prediction accuracy but less prediction confidence.
As an example, if we feed an image of car into a cat-dog
neural network, this image will be classified as either being
a cat or a dog rather than as being inappropriate. Obviously,
to a human being, this is lacking in intelligence. To address
this problem, we propose a new method called subjective-
logic-based uncertainty estimation (SLUE). It is derived from
evidential deep learning (EDL) [1] based on subjective logic
(SL) by processing model outputs while giving uncertainty to
each prediction. The impetus behind this is that the subjective
logic model boosts the traditional evidence theory (belief
function) in the sense that opinions take base rates into
account, whereas evidence theory ignores base rates. With base
rates, we can make good use of prior knowledge. At the same
time, it also makes it possible to define a bijective mapping
between subjective opinions and Dirichlet probability density
functions (PDFs) [2]. With a bijective mapping, the uncertainty
and probability expectation formula can be easily derived.

In EDL, there is no explicit use of base rates, because
that it just used the default base rates neither analyze the

potential initialization methods. In addition, the base rates
is not updated during the training process. The Dirichlet
distribution parameters appeared in EDL (α = e + 1) are
composed of evidence and a weight of one that is allocated
to all the training classes. In comparison, the SLUE used
the base rates to refine the Dirichlet distribution parameters
(α = e+ Ca) to guide the training process. Within the SLUE
method, the base rates is updated after each batch leading to
a more flexible and precise classification.

In addition to the underutilization of base rates within the
EDL method, the sum of all the weights equals the number of
training classes. Intuitively, the sum of all the weights could be
a hyperparameter. Consequently, in SLUE, the sum of all the
weights is represented by the prior constant C; the optimum
can be explored through experiments.

Compared with the existing methods, this work makes the
following contributions:

(1) Taking the base rates explicitly into account, the initial
choice is evaluated. Since the update of base rates is after
each batch, comprehensive analysis with experiments
under the batch size setting was carried out.

(2) Extract the hyperparameter C to generate a more uniform
representation, the function of C is revealed by experi-
ments.

The rest of the paper is organized as follows. Section
II recalls the necessary background about SL (e.g., Dirich-
let distribution and uncertainty calculation formula). Section
III introduces the new SLUE method and presents its loss
function. Several experiments (e.g., out-of-domain detection,
adversarial samples detection, and batch size effect estimation)
are described in Section IV. Section V lists the related work.
Finally, Section VI makes a conclusion about the work.

II. SUBJECTIVE LOGIC BASICS

Before going deeper insight into the SLUE method, we must
introduce some prerequisite definitions.

Definition 1 (State Space): A state space, also known as
a frame of discernment, is an exhaustive set of mutually
exclusive atomic states.



Definition 2 (Evidence): Let Ω = {ωi | i = 1, . . . ,K}
be a state space, and e = {ei | i = 1, . . . ,K} representing
evidence according to each element in Ω that satisfies ei ≥ 0.

Definition 3 (Subjective Logic Opinion): Let Ω = {ωi | i =
1, . . . ,K} be a state space. A SL opinion is an ordered triple
(b, u,a), with

K∑
i=1

ai =1, 0 ≤ ai ≤ 1. (1)

u+

K∑
i=1

bi =1, 0 ≤ bi ≤ 1, (2)

where b delegating the belief mass distribution over Ω, u
is the uncertainty mass, and a is the base rate distribution
representing the prior knowledge over Ω.

Given a state space of cardinality K, the default base rates
for each element in the state space is 1

K , but it is possible
to define the other base rates for all the mutually exclusive
elements of the state space, as long as the additivity constraint
(1) is satisfied. Base rates can also be dynamically updated
as a function of observed evidence. For example, in a box
that contains red and black balls of unknown proportion, the
initial base rates of the balls can be set to 0.5. After having
picked (with return) several balls the base rates can be updated
according to the observed balls proportions [2].

Definition 4 (Dirichlet Distribution): Let Ω be a state space
of K mutually disjoint values, e be the evidence for outcome
ωi ∈ Ω, a a base rates over Ω, and p the probability
distribution of ωi ∈ Ω. Then, the probability density function

Dir(p, e,a) =
Γ
(∑K

i=1 (ei + Cai)
)

∏K
i=1 Γ (ei + Cai)

K∏
i=1

p
(ei+Cai−1)
i , (3)

where C is a prior constant, Γ(·) represents a gamma function.
The probability expectation of the K possible outcomes can

now be written as

E (p | e,a) =
e + Ca

C +
∑K

i=1 ei
. (4)

Meanwhile, the uncertainty can be derived from the the pa-
rameters of the Dirichlet distribution [1]. Then, the following
equivalence holds:

u =
C

C +
∑K

i=1 ei
. (5)

III. THE SLUE METHOD

Suppose the state space is composed by sample predictions;
we define the evidence et, the probability pt, and base rates at
for the current batch t. Consequently, the probability pt−1 for
past batch t− 1. We feed the model outputs into the rectified
linear unit (ReLU) and take the outputs as et, meanwhile, pt

can be calculated with (4).
In the beginning, we do not know the class proportion.

However, once made a batch prediction, we can take the
previous probability pt−1 to update the base rates at. Exactly
as we do in the “ball game”, as we do not know the class

proportion, consequently, after having made predictions, we
can take relative proportions of observed classes probability as
the base rates. Then, α = e+Ca are used as the parameters of
a Dirichlet distribution. Sample uncertainty can be calculated
with (5) to determine whether to accept or reject the current
prediction. The SLUE method uses (5) to quantify uncertainty
directly and probability calculated from (4) to make prediction
decisions. The choosing strategy for initial base rates and prior
constant C are discussed in Section IV-B.

The format loss function, which comes from [1], is adopted
as follows:

L(Θ) =

N∑
i=1

Li(Θ) =

N∑
i=1

K∑
j=1

(yij − pij)2 +
pij (1− pij)

(Si + 1)
,

(6)
where N is the number of samples, K is the number of classes,
yi = {yij | j = 1, . . . ,K} is a one-hot vector that encodes the
ground-truth class of sample xi with yij = 1 and yik = 0, for
all k 6= j, pi = {pij | j = 1, . . . ,K} is a vector representing
class assignment probabilities, and Si = C +

∑K
i=1 ei.

A Kullback-Leibler (KL) term is used to estimate the
divergence caused by unknown states. In order to alleviate
the error brought by misclassified samples, a KL term is
incorporated into the loss function as follows:

L(Θ) =

N∑
i=1

Li(Θ)

+ λs

N∑
i=1

KL [D (pi | ei,ai) ‖D (pi | 〈1, . . . , 1〉)] ,

(7)
where the annealing coefficient λs = min(1.0, s

10 ) ∈ [0,
1], s representing the current training epoch index, and
D (pi | 〈1, . . . , 1〉) is the uniform Dirichlet distribution.

IV. EXPERIMENT

A. Experimental protocol

We use the standard convolutional neural networks (CNNs)
with ReLU as the neural network architecture, all experiments
are implemented in Pytorch1. For the MNIST dataset, a
standard LeNet was trained. Following the suggestion of [3],
an augmented LeNet version that contained 192 filters at each
convolutional layer and had 1000 hidden units for the fully
connected layers was trained for CIFAR10 and CIFAR100
datasets. The characteristics of the datasets are shown in
Table. I.

The criteria were as follows:
(1) Real accuracy is the number of correctly classified in-

domain samples plus the rejected out-of-domain sam-
ples divided by the total number of samples. This is
different from test accuracy, which only takes correctly
classified samples into account; with uncertainty, the
rejected out-of-domain samples should also be regarded

1The SLUE result visualization demo is available under
https://github.com/Soplia/SLUE-demo



TABLE I
A QUICK VIEW OF DATASETS INVOLVED

Name # Classes # Training samples # Testing samples

MNIST [4] 10 55000 10000
CIFAR10 [5] 10 50000 10000

CIFAR100 [5] 10 5000 1000
LSUN [6] 10 - 3000

TEXTURE [7] 10 - 1300
PLACES365 [8] 10 - 4000

MNIST5 5 25000 5000
CIFAR5 5 28000 4800

Fig. 1. Estimation results based on different prior constant C values for
MNIST (left) and CIFAR10 (right) datasets

as correctly classified samples and be taken into ac-
count. A higher value is better.

(2) Entropy is used to evaluate the prediction uncertainty as
described in [3]. The increase in prediction uncertainty
leading to an increase in entropy. Consequently, % max
entropy which means the ratio of prediction entropy
to the maximum prediction entropy and cumulative
distribution function (CDF) is used for uncertainty
estimation. For out-of-domain samples, a higher % max
entropy value is better.

B. Initial stage choice

This section describes and compares several strategies to
choose the prior constant C and initial base rates. The first five
classes of the MNIST and CIFART10 datasets were extracted
to generate MNIST5 and CIFAR5 datasets. The model with
the SLUE method was trained based on these two datasets;
then it was tested with MNIST and CIFAR10 test datasets
that contained all ten classes. During this process, the first five
class samples played the role of in-domain samples, while the
last five class samples acted as out-of-domain samples.

To select the optimum prior constant C, we examined
various settings from zero to 100 at an interval of five (the
number of training classes). As we can see from Fig. 1, the
% max entropy kept increasing; meanwhile, the real accuracy
reached an optimum. To balance these two criteria and take
the integer multiples value of the number of training classes,
a value four times the number of training classes was used in
the experiments. The optimal real accuracy and intersection
are indicated by two dashed black lines, and the chosen prior
constant C is indicated by dash-dot blue lines.

TABLE II
ESTIMATION RESULTS BASED ON DIFFERENT BASE RATES INITIAL

STRATEGIES

Strategy Real Accuracy % Max Entropy

MNIST / CIFAR10 MNIST / CIFAR10
Uniform Prior 0.733 / 0.645 0.448 / 0.608
Frequency Prior 0.733 / 0.645 0.448 / 0.608

Highest Frequency Prior 0.733 / 0.645 0.446 / 0.607
Lowest Frequency Prior 0.737 / 0.645 0.447 / 0.607

TABLE III
TEST ACCURACIES FOR MNIST AND CIFAR5 DATASETS

Method MNIST CIFAR5

CNN 0.994 0.764
EDL 0.993 0.843

SLUE 0.997 0.843

Events that can be repeated many times are typically fre-
quentist in nature, meaning that base rates for such events
typically can be derived from statistical observations [2]. Thus,
for the initial base rates, there were four candidates:

(1) Use the uniform base rates (hereafter called uniform
prior).

(2) Use each training class frequency as the initial base
rates (hereafter called frequency prior).

(3) Assign the whole base rates to the training class that
has the highest frequency (hereafter called highest
frequency prior).

(4) Assign the whole base rates to the training class that has
the lowest frequency (hereafter called lowest frequency
prior).

Prior constant C is set to equal four times the number of
training classes, then each strategy is verified in turn. The
training and testing period operations are the same as those
for choosing optimum prior constant C. As can be seen from
Tables II, there was not an obvious difference between the
four; because the initial base rates is just initialization, the
final classification is determined by all the base rates in every
iteration step, and the initial base rates does not dominate.
As a result, the easiest achieved strategy (uniform prior) was
chosen for determining the initial base rates.

C. Synthetic dataset

First and foremost, SLUE accuracy performance was eval-
uated. Following the suggestion of [3], the CIFAR10 dataset
was reduced by selecting the first five classes; it is referred to
as CIFAR5. Since with CNNs method the model cannot calcu-
late uncertainty for out-of-domain samples, to be fair, classical
test accuracy was adopted instead of real accuracy. Table III
demonstrates the main characteristics for comparing the SLUE
method and the existing methods. The SLUE method achieved
a match and better performance in test accuracy. Hence, the
uncertainty estimation extensions of SLUE do not decline the
model performance on in-domain sample classification.



TABLE IV
COMPARISON BETWEEN DIFFERENT ESTIMATION METHODS. ↑ INDICATES
LARGER VALUES ARE BETTER, BOLD NUMBERS ARE SUPERIOR RESULTS.
ALL VALUES ARE PERCENTAGES AND ARE AVERAGED OVER THE FOUR

OUT-OF-DOMAIN DATASETS DESCRIBED IN SECTION IV-C

Dtrain Method % max entropy ↑

Cifar10 EDL 0.78
SLUE 0.93

Cifar100 EDL 0.76
SLUE 0.92

There is one more point that should be touched upon, the
model uncertainty performance. The models were trained with
the CIFAR10 and CIFAR100 datasets separately. The trained
models were tested with the out-of-domain datasets (e.g.,
TEXTURE, PLACES365, LSUN, CIFAR10, and CIFAR100
datasets). To be homogeneous between testing datasets and
training datasets, for TEXTURE, PLACES365, and CIFAR100
datasets, the first ten classes were extracted and then used
for the experiments. The results of the prediction entropy
CDF on the out-of-domain datasets are shown in Fig. 2.
Since the predictions for these samples are almost wrong,
predictions with maximum entropy are expected. A high start
entropy value will be observed, and after this beginning point,
there will be a dramatic increase in probability. Regarding
the figure, the curves closer to the bottom right corner of
the plot are wanted, which demonstrates maximum entropy
in all predictions [3]. What is striking about the curves in
these figures is that the SLUE method associates much more
uncertainty with its predictions than other methods. Compared
to the decentralized entropy distribution on the EDL method,
for the SLUE method, it is more concentrated. This attribute
makes it easier to distinguish out-of-domain samples. As
Table. IV demonstrated that SLUE reached better uncertainty
assessment performance 15% improvement in terms of % max
entropy. It is apparent that the uncertainty estimates of the
SLUE method are better than those of the baseline methods.

D. Adversarial dataset

Last but not least, the different methods were also evaluated
against adversarial samples [1], [3], [9]. Using the fast gradient
sign method, adversarial MNIST and CIFAR10 datasets are
generated. The feature is that the bigger is, the generated
datasets were closer to the out-of-domain datasets. Because
it becomes harder to make correct predictions, bigger % max
entropy would be observed. Fig. 3 presents an overview of
the performance of real accuracy and % max entropy for
the SLUE method against adversarial datasets. These figures
are quite revealing in several ways. First, the figure indicates
that the SLUE method has the highest real accuracy for the
adversarial datasets as shown in the left column of the figure.
Second, with the comparable % max entropy on all of its
predictions as indicated by the right column of the figure, the
SLUE method can be used for the identification of out-of-
domain samples. The SLUE method represents a good balance
between prediction uncertainty and real accuracy criteria. It
associates high uncertainty with the wrong predictions, which

(a) TEXTURE dataset

(b) PLACES365 dataset

(c) LSUN dataset

(d) CIFAR100 dataset (left) and CIFAR10 dataset (right)

Fig. 2. Empirical CDF for the entropy of the predictive distributions on the
out-of-domain datasets based on a model trained with CIFAR10 (left column)
and CIFAR100 (right column) datasets

can be used to reject out-of-domain samples, improving model
robustness.

E. Batch size explanation

Since base rates update starts at the end of each batch,
the effect of different batch sizes on uncertainty estimation
was evaluated. We used different batch size settings (e.g.,
20, 50, 100, 200, 500) to train models based on CIFAR10
and CIFAR100 separately, and used the SVHN and LSUN as
out-of-domain datasets. As can be seen from Fig. 4 that the



(a) MNIST dataset

(b) CIFAR10 dataset

Fig. 3. Real accuracy and % max entropy as a function of the adversarial
perturbation

smaller the batch size is, the better the uncertainty estimation
performance. It is reasonable because of the small batch size
leading to a more precise update. On the other hand, the batch
size does not need to be infinitely small. If it is very small,
the training speed will be reduced, and it will also encounter
overfitting. It is obvious when the batch size greater than
100, there is a significant performance gap. In comparison,
there is no big difference when the batch size lower than
100. In conclusion, a batch size equal to 100 can meet the
requirements.

V. RELATED WORK

The problem that prediction lacks confidence has been
examined by many researchers [1], [10], [11], and uncertainty
has been used in the past to investigate out-of-domain detec-
tion in image segmentation [12]–[15] and image classification
[16], [17].

Subjective logic Subjective logic [2] has been applied in a
variety of ways, for example, in fraud detection [18], video
segmentation [19], and image classification [20], [21]. Due
to the unique nature of subjective logic, it can easily achieve
bijection with Dirichlet distribution. The derived uncertainty
score [1] has been proved to be effective in uncertainty
estimation as well as out-of-domain detection. But its main
problem is insufficient uses of subjective logic, especially the
overlook of base rates. As a comparison, our work makes a
good command of basic rates.

Uncertainty estimation Interest in assessing and quanti-
fying uncertainty has increased in recent years, a reliable
uncertainty estimation has been recognized as crucial for
decision making. There are three main families that aim to
provide meaningful uncertainty estimation. The first family

(a) SVHN dataset

(b) LSUN dataset

Fig. 4. Empirical CDF for the entropy of different batch sizes on the out-of-
domain datasets based on a model trained with CIFAR10 (left column) and
CIFAR100 (right column) datasets

are Bayesian Neural Networks [22]–[28], the disadvantage is
that computation consumption. The second family is composed
of Monte-Carlo drop-out based models [29]–[31] and ensem-
bles [10]. Uncertainty estimation is achieved by computing
statistics such as mean and variance. A disadvantage is that
uncertainty estimation is fulfilled in the sacrifice of time
consumption.

Out-of-domain detection Out-of-domain detection [17],
[32]–[35] is a very trendy research field. There are
various research methods, including generative-based and
discriminative-based. The above methods have their own
advantages and disadvantages, and detailed analysis can be
obtained from these two surveys [36], [37]. Our research
focuses on processing the model output to obtain a value
that can distinguish the out-of-domain samples. The existing
similar methods are softmax score [38], energy score [16],
trust score [39], and response score [40]. They are all based
on Bayesian probability theory, and the information that can
be obtained is limited. The subjective logic used in this article
is a generalization of the belief function, which can better
extract more information from the input samples to make more
accurate and reasonable predictions.

VI. CONCLUSION

The aim of the present research was to extend the existing
EDL method by taking base rates into account. It verified
the SLUE method uncertainty performance through out-of-
domain and adversarial datasets. It introduced how to select the
initial parameters and use real accuracy as one of the criteria.
Meanwhile, we manifested the batch size effect on uncertainty
estimation. From existed results, we can tell 100 is a sufficient



option for batch size setting. The most obvious finding to
emerge from this study is that guided by base rates, the new
SLUE method works better not only in terms of real accuracy
but also on the uncertainty estimation performance. As it
can reject out-of-domain samples, this approach will prove
useful in improving model robustness. Although extensive
research has been carried out, one issue is that the uncertainty
delineation is still not complete. In this study, the uncertainty
is calculated for the whole state space. Consequently, in the
future, we are going to calculate uncertainty for all subsets of
state space to provide more information for making predic-
tions.

ACKNOWLEDGMENT

This work was funded by the Auvergne Rhône Alpes region:
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