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Abstract. The partial classification can assign a sample to a class subset
when this sample has similar probabilities for multiple classes. However,
the extra information for making such predictions usually comes at the
cost of retraining the model, changing the model architecture, or applying
a new loss function. In an attempt to alleviate this computational burden,
we fulfilled partial classification only based on pre-trained CNN-based
model outputs (PCMO), by transforming the model outputs to beliefs for
predicted sets under the Dempster-Shafer theory. The PCMO method has
been executed on six prevalent datasets, four classical CNN-based models,
and compared with three existing methods. For instance, experiments with
MNIST and CIFAR10 datasets show the superiority of PCMO in terms of
average discounted accuracy (0.23% and 7.71% improvement, respectively)
when compared to other methods. The performance demonstrated that
the PCMO method makes it possible to improve classification accuracy
and to make cautious decisions by assigning a sample to a class subset.
Moreover, the PCMO method is simple to implement compared to the
existing methods, as the PCMO method does not need to retrain the
model or conduct any further modifications.

Keywords: CNN-based model · Decision making· Dempster-Shafer the-
ory · Partial classification.

1 Introduction

The precise or certainty classification [18, 36] is a well-known issue in which a
sample is classified into one and only one of the training classes. Unfortunately,
such a strict classification sometimes results in misclassification when the input
sample does not contain sufficient evidence to identify a certain class. The partial
classification [9, 22, 25] is one of the more practical ways to solve this problem.
It is defined as the assignment of a sample into a class subset. For example, let
us consider a class set Ω = {ω1, ω2, ω3}. Here, we cannot manage to reliably
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classify a sample into a single class, but it is almost sure that it does not belong
to ω1. Consequently, it is more reasonable to assign it to the subset {ω2, ω3}.
In practice, high ambiguity emerges in numerous applications, and large-scale
datasets contain a fair amount of confusing samples, these are the bedrock
of the usage of partial classification. For instance, the goal of road surfaces
classification [40] is to produce a prediction with almost null error which can be
expected from partial classification.

A considerable amount of literature has been published on partial classifica-
tion and has always led to different classification strategies. On the one hand,
researchers attempted to predict a subset with prior fixed cardinality [30] or
with a rejection option [13, 15, 19]. They can be seen as a special case of partial
classification by classifying the sample into one specific class subset. On the other
hand, a number of authors attempted to modify the loss function [3, 10, 26] or
build a new classifier [31, 35, 38] to provide beliefs for predicted sets. Usually,
such algorithms are time-consuming. To this end, it is essential to reduce the
computation and time complexity by efficiently and sufficiently leveraging the
information provided by the pre-trained neural network.

In this paper, we proposed a new partial classification method based on pre-
trained CNN-based model outputs (PCMO). Different from the existing methods,
the PCMO method simply and efficiently fulfilled partial classification only based
on pre-trained CNN-based model outputs, and provided beliefs to predicted sets
for further prediction. As manifested in Fig. 1, at first, the CNN-based model
extracts features from the input layer through the combination of the feature
extraction process and the fully connected layer between the last hidden layer and
the output layer. Second, the received features are converted into beliefs under
the Dempster-Shafer theory (DST) [32] through the output to possibility and
the possibility to belief processes. Finally, the PCMO method performs partial
classification based on the produced beliefs by choosing the maximum belief and
generating the corresponding class subset as the prediction.

The contributions of our work can be summarized as follows:

– The most striking achievement is that the proposed method is fulfilled only
based on model outputs that can be applied to any pre-trained CNN-based
model without any demand to retrain the model or conduct any further
modifications.

– By considering good features of log function and analyzing the regular pattern
of model outputs, a novel and reasonable transformation from model outputs
to possibility distribution is proposed.

2 Related Work

Partial classification Partial classification also known as set-valued classifica-
tion becomes prevalent recently imputable to its capability dealing with ambiguity.
At the first glance partial classification seems to be linked to multi-label classifi-
cation [4, 34]. The confusion comes from the fact that both methods produce a
class subset as the prediction. However, the crucial dissimilarity comes in that
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Fig. 1. Framework of the proposed method. The feature extraction process is demon-
strated simply, it can be any kind of CNN-based architecture, e.g., fully connected
layer, LeNet [16], GoogLeNet [33], or ResNet [11]. The detailed output to possibility,
possibility to belief, and partial classification processes are presented in Section 4.

an input sample is labeled by a subset of classes for multi-label classification,
whereas for partial classification, only a single class.

The straightforward way to fulfill partial classification is to always predict a
fixed number of classes such as the top five most proper classes [30]. However,
there is no reason to predict exactly five or any other a prior fixed number of
classes all the time. Classification with rejection option [13, 15, 19] is another
plain strategy that concerns the treatment of outliers that are not defined by any
of the training classes. Depending on this strategy, such samples are assigned to
the empty set, or the entire set, reflecting maximum uncertainty. Both the top
five and rejection strategies can be seen as a special case of partial classification
by giving belief for one specific class subset. Apart from the above methods,
there are two directions that aim at modifying loss function or building the new
classifier to provide beliefs for predicted sets. On the one hand, Ha [10] introduces
a loss function consist of the sum of two terms, one reflecting the loss of missing
the ground-truth labels, and the other penalizing imprecision. A similar loss
function used in [26] is composed of the uncertainty quantified by conditional
class probabilities, and the quality of the predicted set measured by a utility
function. Besides, Coz et al. [3] propose a loss function inspired by aggregating
precision and recall. On the other hand, Vovk et al. [35] proposed an approach
to learn a partial classifier with finite sample confidence guarantees. In the same
context, Sadinle et al. [31] designed a classifier that guarantees user-defined levels
of coverage while minimizing ambiguity. As we can see, the weakness of the above
methods is the time-consuming nature, e.g., retraining model, changing model
architecture, and applying the new loss function.

Dempster-Shafer theory Dempster-Shafer theory (DST) [32] is a general
framework for reasoning with uncertainty which is proposed by Arthur P. Demp-
ster [5] then refined by Glenn Shafer [32] also know as evidence theory. The
existing works related to CNN have the following three main directions. The
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first one is classifier fusion, in which the outputs of several classifiers are trans-
formed into belief functions and aggregated by suitable combination rules [1, 20,
42]. Another direction is evidential calibration, the decisions of classifiers are
converted into belief functions with some frequency calibration property [21, 23,
24]. The last approach is to design evidential classifiers [6, 7], which transformed
the evidence of the input sample into beliefs and combine them by appropriate
combination rules.

3 Background

3.1 The pattern of the CNN-based model outputs

The convolutional neural network (CNN) [16] is a machine learning method that
uses multiple layers to progressively extract features from raw data as sample
representation. Define a traning dataset Dtrain = {xn, yn}Nn=1 has K classes,
where xn ∈ Rd, and yn ∈ {1, . . . , i, . . . ,K}. A CNN-based model f(x;θ), with
the entire model parameter θ. From the last hidden layer δn = {δ1, . . . , δi, . . . , δh}
to the output layer on = {o1, . . . , oi, . . . , oK}, the weight W ∈ Rh×K defines a
transformation, i.e., on = Wδn. In general, the empirical loss L(θ) over Dtrain
has the following form:

L(θ) =

N∑
n=1

`(f(xn;θ), yn) (1)

where `(·) is the specified loss function, e.g., logistic loss, exponential loss, or
cross-entropy loss.

The CNN-based model mentioned in this article respects two usual and
reasonable assumptions. The model loss Eq. (1) converges to zero when iteration
t approaches infinity, i.e., limt→∞ L(θt) = 0, and the model’s last hidden layer
and the output layer are fully connected. Based on the two assumptions, [41]
demonstrates, both theoretically and empirically, that the last weight layer W
of a neural network converges to a support vector machine (SVM) trained on the
last hidden layer output δ with the commonly used cross-entropy loss.

Since W represents a hyperplane, the farther the input sample is from the
hyperplane, the greater the corresponding class output, i.e., max(on) will be. As
illustrated in Fig. 2, the model output contours of the CNN-based model are
radiated, becoming higher as the distance from the hyperplane increases.

3.2 Dempster–Shafer theory

The Dempster–Shafer theory [32] (or evidence theory) is a mathematical frame-
work that enables the reflection of partial and uncertain knowledge. Let Ω =
{ω1, . . . , ωi, . . . , ωK} be the finite class sets. The belief function m : 2Ω → [0, 1]
applied on xn measures the degree of belief that the ground-truth label of xn
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(a) MNIST dataset

(b) CIFAR10 dataset

Fig. 2. The model output contours on MNIST [17] and CIFAR10 [14] datasets. Dif-
ferent prevalent CNN-based models are verified. From left to right are LeNet [16],
GoogLeNet [33], ResNet [11], and MobileNet [12]. For visualization purposes, the h that
appears in the last hidden layer is set as two. Meanwhile, according to the minimum
and maximum column values of δ ∈ RN×2 a 2D mesh can be generated. Feed this mesh
into the last hidden layer to get the outputs which can be regarded as contours. As we
can see, the pattern of the CNN-based model is that a sample far from the training
dataset can bring high outputs and lead to high probabilities for several classes. Under
this context, partial classification rather than precise classification should be used.

belongs to a subset Ai ⊆ Ω. It satisfies the following equation:∑
Ai⊆Ω

m(Ai) = 1 (2)

The subset Ai such that m(Ai) > 0 is called the focal set of m. When the focal
set is nested, m is said to be consonant. As we can see the maximum quantity of
beliefs is 2K which is a significant difference from K for probability. Since the
maximum quantity of subsets of classes is also 2K , belief instead of probability is
inherently more suitable for partial classification.

4 Proposed Method

As can be seen from Section 3.1, a sample that is far from the training dataset
occupies high outputs for several classes leading to high probabilities for the
corresponding classes, resulting in the improper execution of precise classification.
Consider, from another angle, the high outputs for multiple classes can be
regarded as evidence to classify a sample into a class subset. From this point, we
proposed to calculate beliefs only based on pre-trained CNN-based model outputs
to fulfill partial classification. Moreover, we chose the possibility as the bridge
between model outputs and beliefs, then proposed the following transformations.
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Sorting on by descending order to get o′n = {o′1 ≥ · · · ≥ o′i ≥ · · · ≥ o′K},
where o′i is the ith largest element in on. Then, a prerequisite step is to prepare
a temporary vector vn = {v1, . . . , vi, . . . , vK} based on Eq. (3) that coordinates
with Eq. (4) to calculate the target possibility distribution.

vi =
1

|Ai|

i∑
k=1

log2(1 + max(0, o′k)) (3)

where 1
|Ai| is used to penalize the ambiguity caused by classifying xn to Ai. If

we consider a reasonable assumption that the desired possibility transformation
should keep the original pattern of outputs, escalating the difference for small
values while narrowing the difference for bigger values. The log2 function should
be chosen, which tends to be flat after the initial rapid growth. At the same time,
in order to avoid the negative possibility, use max(0, o′k) to clamp the outputs
and move the log2 to the left by one unit.

After min-max normalization by Eq. (4), we can get the possibility distribu-
tion πn = {π1, . . . , πi, . . . , πK}. Following the theory proposed in [2] that any
possibility distribution is a plausibility function corresponding to a consonant m.
Our possibility distribution πn can be transformed to belief function m according
to Eq. (5), the detailed calculation is presented in Fig. 3. In our case, πK equals
zero, which implies that m(Ω) equals zeros.

πn =
vn −min(vn)

max(vn)−min(vn)
(4)

m(Ai) =

πj − πj+1 if Ai = {ω1, · · · , ωj} for some j ∈ {1, · · · ,K − 1}
πK if Ai = Ω
0 otherwise

(5)

Fig. 3. Calculation of the belief function m [2].

The PCMO classification algorithm is demonstrated in Algorithm 1. Based
on the beliefs calculated through Eqs. (3), (4), and (5), we chose the subset with



PCMO: Partial Classification from CNN-Based Model Outputs 7

the maximum belief as the prediction. Suppose, the maximum belief is m(Ai),
the PCMO method will generate the predicted set {ω1, . . . , ωi} corresponding
to the top i maximum outputs. In addition, the usage is flexible, for example,
m(A1) = 1−m(A1) can be regarded as the uncertainty for the classification as
used in Section 5.4.

Algorithm 1: Classification process for a sample xn

Data: Model outputs on ∈ R1×K

Result: Predicted set predSet
Sort on in descending order to get the sorted index index and sorted outputs
o′n;

Calculate vector vn base on o′n according to Eq. (3);
Calculate possibility distribution πn base on vn according to Eq. (4);
Calculate belief mn base on πn according to Eq. (5);
Obtain the maximum belief index idx = argmax(mn) for the sample xn;
Generate the predicted set predSet = list(index[0 : i + 1]), which contains the
candidate classes;

return predSet;

5 Experiments

5.1 Experiment protocol

There are six datasets involved, a Road Surface dataset manually generated and
five prevalent datasets, i.e., modified national institute of standards and technol-
ogy (MNIST) [17], canadian institute for advanced research 10 (CIFAR10) [14],
street view house number (SVHN) [29], large-scale scene understanding challenge
(LSUN) [37], and canadian institute for advanced research 100 (CIFAR100) [14].
The characteristics of the datasets are shown in Table 1. Four classical CNN-
based models, i.e., LeNet [16], GoogLeNet [33], residential energy services network
(ResNet) [11], and MobileNet [12], are adopted to prove the efficiency of the
PCMO method. We used the cross-entropy loss as the loss function and the
rectified linear unit (ReLU) as the activation function. For method comparison,
we chose energy score (based on pre-trained model outputs) [19], dropout score
(based on several executions of the pre-trained model on the testing dataset) [13],
and ensemble score (based on executions of several pre-trained models on the
testing dataset) [15].

5.2 Criteria

Traditional accuracy becomes improper when partial classification is allowed. In
this case, Zaffalon [39] proposed the following discounted accuracy:

a =
1

|Ai|
I(yn ∈ Ai) (6)



8 J. Xie et al.

Table 1. A quick view of datasets involved.

Name # Classes # Training samples # Testing samples

MNIST [17] 10 55000 10000
CIFAR10 [14] 10 50000 10000

SVHN [29] 10 4000 1000
LSUN [37] 10 2400 600

CIFAR100 [14] 10 8000 2000
Road Surface 3 2040 780

where I(·) is the indicator function.
For a dataset, the accuracy is evaluated by the average discounted accuracy

(ADA). The ADA is a single value with the requirement that the better the
prediction, the larger the ADA is.

ADA =
1

N

N∑
n=1

an (7)

In addition, to approximately measure the goodness of calibration, expected
calibration error (ECE) [28] defined by Eq. (8) was adopted. This groups the
probability interval into B bins with nb samples inside and assigns each predicted
probability to the bin that encompasses it. The calibration error is the difference
between the fraction of predictions in the bin that are correct (accuracy) and the
mean of the probabilities in the bin (confidence).

ECE =

B∑
b=1

nb
N
| acc(b)− conf(b)| (8)

where acc(b) and conf(b) are the accuracy and confidence of bin b, respectively.

5.3 Evaluation of the PCMO method

The PCMO method performs partial classification by choosing the predicted
set that occupies the maximum belief. Naturally, the bigger cardinality of the
predicted set indicates a more confusing input sample. Thus, in order to verify the
efficiency of partial classification and the capacity of reducing the classification
risk under the PCMO method. We rejected the most confusing samples according
to different rejection rates [27].

On the one hand, we executed the PCMO method for different CNN-based
models when rejection rates change from 0.0 to 1.0. Fig. 4 is quite revealing in two
ways. First, the ADA increases along with the increase of rejection rates. Second,
the selected four classical CNN-based models achieved good ADA values, except
for the slightly worse initial accuracy of LeNet and MobileNet due to its simple
model architecture. This indicates that the PCMO method performed partial
classification based on the calculated beliefs. The performance on the different
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Fig. 4. The performance in terms of ADA values of different CNN-based models with
different rejection rates based on MNIST (left) and CIFAR10 (right) datasets.

Fig. 5. The performance in terms of ADA values of different methods with different
rejection rates based on MNIST (left) and CIFAR10 (right) datasets.

CNN-based models further proves that partial classification can be achieved only
based on the CNN-based model outputs.

On the other hand, we verified different methods based on GoogLeNet (the
best performing model in the previous step), as demonstrated in Fig. 5. The ADA
of the PCMO method increases significantly when the rejection rate increases
from 0.0 to 0.1 or 0.2. In contrast, the ADA of the other methods performed
fluctuation or insensitivity when the rejection rate increased from 0.0 to 1.0. The
striking performance is evidence that the PCMO method makes a well-distributed
partial classification while the others only classified samples to a class subset
when the rejection rate is large.

To manifest the efficiency of different methods and models when against
a small rejection rate, we set rejection rate equals 0.1 and received Table 2.
The PCMO method achieves the highest ADA and comparable ECE values
among all the methods. Compared to other methods, there is a 0.23% and 7.71%
improvement in terms of ADA for MNIST and CIFAR10, respectively, based
on GoogelNet. The detailed statistics are demonstrated in Table 3. It is also
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Table 2. Comparative experimental results on five datasets for four CNN-based models
and four methods when the rejection rate equals 0.1.

Datasets MNIST CIFAR10 SVHN LSUN CIFAR100

Criteria ADA ECE ADA ECE ADA ECE ADA ECE ADA ECE

PCMO
based on
models

GoogLeNet 1.000 0.004 0.933 0.046 1.000 0.014 0.811 0.096 0.961 0.091
ResNet 1.000 0.003 0.934 0.040 1.000 0.018 0.924 0.078 0.994 0.082

MobileNet 1.000 0.006 0.712 0.019 0.790 0.071 0.333 0.077 0.406 0.178
LeNet 1.000 0.009 0.698 0.031 0.209 0.015 0.135 0.041 0.144 0.037

Methods
based on

GoogLeNet

PCMO 1.000 0.004 0.933 0.046 1.000 0.014 0.811 0.096 0.961 0.091
Energy 1.000 0.001 0.877 0.041 0.987 0.008 0.765 0.102 0.912 0.072

Ensemble 0.998 0.001 0.847 0.039 0.967 0.016 0.732 0.098 0.856 0.085
Dropout 0.995 0.003 0.844 0.043 0.964 0.014 0.736 0.102 0.873 0.079

Methods
based on
ResNet

PCMO 1.000 0.003 0.934 0.040 1.000 0.018 0.924 0.078 0.994 0.082
Energy 1.000 0.002 0.878 0.033 0.991 0.008 0.898 0.054 0.939 0.053

Ensemble 0.998 0.001 0.846 0.034 0.967 0.015 0.824 0.075 0.884 0.071
Dropout 0.993 0.003 0.840 0.037 0.956 0.019 0.811 0.080 0.878 0.081

Methods
based on

MobileNet

PCMO 1.000 0.006 0.712 0.019 0.790 0.071 0.333 0.077 0.406 0.178
Energy 0.989 0.004 0.668 0.018 0.743 0.073 0.312 0.077 0.370 0.181

Ensemble 0.998 0.016 0.671 0.028 0.752 0.079 0.325 0.080 0.365 0.166
Dropout 0.976 0.006 0.639 0.016 0.708 0.061 0.298 0.075 0.354 0.174

Methods
based on

LeNet

PCMO 1.000 0.009 0.698 0.031 0.209 0.015 0.135 0.041 0.144 0.037
Energy 0.999 0.003 0.662 0.030 0.188 0.018 0.144 0.039 0.155 0.037

Ensemble 0.998 0.003 0.667 0.016 0.206 0.013 0.144 0.039 0.166 0.050
Dropout 0.984 0.009 0.627 0.032 0.192 0.011 0.137 0.032 0.149 0.033

Table 3. The detailed performance improvement statistics. This represents the sub-
traction between the ADA value produced by the PCMO method and the averaged
ADA value of the other three methods.

Models
Datasets

MNIST CIFAR10 SVHN LSUN CIFAR100

GoogLeNet 0.23% 7.71% 2.74% 2.74% 2.74%

ResNet 0.31% 7.90% 2.89% 2.89% 2.89%

MobileNet 1.20% 5.24% 5.56% 5.56% 5.56%

LeNet 0.63% 4.60% 1.36% 1.36% 1.36%

clear, for each CNN-based model, that no matter what dataset is involved, the
PCMO method performs better than other methods. This proved that the PCMO
method is effective in reducing the misclassification of the confusing sample with
the beliefs calculated only based on pre-trained CNN-based model outputs.

5.4 Practical usage of the PCMO method

The PCMO method has a wide range of application contexts, e.g, autonomous
driving [40]. To prove the PCMO method is effective in reducing classification risk
practically, we applied it to the road surface classification, which is an essential
part of autonomous driving. The Road Surface dataset is mixed manually from



PCMO: Partial Classification from CNN-Based Model Outputs 11

the Crack [40] and Pothole [8] datasets, which contains three classes, i.e, crack,
pothole, and normal. Several samples are shown in Fig. 6

Fig. 6. The visualization of the Road Surface dataset, which contains cracks (the first
row), potholes (the second row), and normals (the third row). As we can see, each class
contains several confusing samples, e.g, the fourth one, the third one, and the second
one for each class, respectively. The PCMO method aims to detect confusing samples,
reducing the classification risk.

Fig. 7(a) shows a certain crack sample, in which the crack area is obvious
and clean. Thus, the PCMO method produced high belief m(crack) = 0.85 and
low uncertainty m(crack) = 0.15 to indicate the certain classification. Similarly,
Fig. 7(b) and Fig. 7(c) show a certain pothole and normal sample, respectively,
which contains sufficient evidence (obvious class characteristics) to support a
certain prediction.

Inversely, Fig. 7(d) demonstrated a confusing crack sample that is difficult to
identify from a pothole sample due to its circle-shaped crack. Fig. 7(e) manifested
a confusing pothole sample whose pothole is too shallow to identify from a normal
sample. And Fig. 7(f) demonstrated a confusing normal sample whose crack
indicates it is a crack sample rather than a normal sample. Correspondingly, the
PCMO method produces low belief and high uncertainty as illustrated in Fig. 7.
Based on the PCMO method, we can reduce classification risk and enhance the
quality of the target system by rejecting confusing samples.

6 Conclusion

In this paper, we proposed a new partial classification method named PCMO,
which is fulfilled based on pre-trained CNN-based model outputs. At first, we
theoretically and empirically proved our hypothesis that a sample far from the
training dataset can provide high outputs and lead to high probabilities for several
classes. Second, we adopted possibility as the bridge fulfilling the transformation
from model outputs to beliefs for the predicted sets. Then, we verified the PCMO
method with different CNN-based models, as well as different methods based on
five datasets. Finally, to demonstrate the practical usage of the PCMO method,
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(a)
m(crack) =
0.85,
m(crack) =
0.15

(b)
m(pothole) =
0.80,
m(pothole) =
0.20

(c)
m(normal) =
0.86,
m(normal) =
0.14

(d)
m(crack) =
0.30,
m(crack) =
0.70

(e)
m(pothole) =
0.20,
m(pothole) =
0.80

(f)
m(normal) =
0.11,
m(normal) =
0.89

Fig. 7. The beliefs calculated based on the proposed method for different types of
samples. (a) Certain crack sample, (b) certain pothole sample, (c) certain normal
sample, (d) confusing crack sample, (e) confusing pothole sample, and (f) confusing
normal sample.

we conducted experiments based on a manually generated road surface dataset.
From the production of ADA and ECE criteria, we can tell that the PCMO
method performs better than the existing methods, as it can provide a high belief
to a certain sample, as well as a high uncertainty to a confusing sample. The
PCMO method proved effective in increasing prediction accuracy and ultimately
reducing the classification risk. In the future, we plan to explore the feasibility of
PCMO methods on all types of pre-trained models and try to develop a method
to generate beliefs for all subsets of the entire set.
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