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Abstract. Clustering is an unsupervised task whose performances can
be highly improved with background knowledge. As a consequence, sev-
eral semi-supervised clustering approaches have proposed to integrate
prior information in the form of constraints, generally at the instance-
level. Amongst them, evidential semi-supervised clustering algorithms,
such as CECM or SECM algorithm, rely on the theoretical foundation
of belief function which extends the probabilistic theory and allows us
to express many types of uncertainty about the assignment of an object
to a cluster. In this framework, no evidential clustering algorithm has
ever mixed different types of instance-level constraints. We propose here
to combine pairwise constraints and labeled data constraints in order
to better retrieve information from the background knowledge. The new
algorithm, called LPECM, shows good performances on synthetic and
real data sets.

Keywords: Labeled data constraints · Pairwise constraints · Instance-
level constraints · Belief function · Evidential clustering · Semi-supervised
clustering.

1 Introduction

Clustering is a classical data analysis method that aims at creating natural
groups from a set of objects by assigning similar objects into the same cluster
while separating dissimilar objects into different clusters. Clustering solutions
can be expressed in the form of a partition. Amongst partitional clustering meth-
ods, some produce hard [6,18], fuzzy [10,19] and credal partitions [2,3,4,14]. A
hard partition assigns an object to a cluster with total certainty whereas a fuzzy
partition allows us to represent the class membership of an object in the form
of a probabilistic distribution. The credal partition, developed in the framework
of belief function theory, extends the concepts of hard and fuzzy partition. It
makes possible the representation of both uncertainty and imprecision regarding
the class membership of an object.

Clustering is a challenging task since various clustering solutions can be
valid although distinct. In order to lead clustering methods towards a specific
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and desired solution, semi-supervised clustering algorithms integrate background
knowledge, generally in the form of instance-level constraints. In [2,3,19], labeled
data constraints are taken into account to improve the performances of the clus-
tering. In [4,6,10,18], two less informative constraints are introduced: the must-
link constraint, which specifies that two objects have to be in the same cluster
and the cannot-link constraint, which indicates that two objects should not be
assigned in the same cluster.

The combination of the three types of instance-level constraints can help
to retrieve as most information as possible and thus can achieve better per-
formances. However, there exists currently very few methods able to deal with
such constraints [17], more particularly, none generates a credal partition. In
this paper, we propose to associate two evidential semi-supervised clustering al-
gorithms, the first one handling pairwise constraints and the second one dealing
with labeled data constraints. The goal is to create a more general algorithm
that can obtain a large number of constraints from the background knowledge
and that can generate a credal partition.

The rest of the paper is organized as follows. Section 2 recalls the necessary
backgrounds about belief function, credal partition and evidential clustering al-
gorithms. Section 3 introduces the new algorithm named LPECM and presents
the objective function as well as the optimization steps. Several experiments are
produced in Section 4. Finally, Section 5 makes a conclusion about the work.

2 Background

2.1 Belief function and credal partition

Evidence theory [15] (or belief function theory) is a mathematical framework
that enables to reflect the state of partial and uncertainty knowledge. Let X
be a data set composed of n objects such that xi ∈ Rp corresponds to the ith

object. Let Ω = {ω1, . . . , ωc} be the set of possible clusters. The mass function
mik : 2Ω → [0, 1] applied on the instance xi measures the degree of belief that
the real class of xi belongs to a subset Ak ⊆ Ω. It satisfies:∑

Ak⊆Ω

mik = 1. (1)

The collection M = [m1, . . . ,mn] such that mi = (mik) forms a credal partition
that is a generalization of a fuzzy partition. Indeed, any subset Ak such that
mik > 0 is named a focal set of mi. When all focal elements are singletons, the
mass function is equivalent to a probability distribution. If such situation occurs
for all objects, the credal partition M can be seen as a fuzzy partition.

Several transformations of a mass function mi are possible in order to extract
particular information. The plausibility function pl(A) : 2Ω → [0, 1] defined in
equation (2) corresponds to the maximal degree of belief that could be given to
subset A:

pl(A) =
∑

Ak∩A 6=∅

m(Ak), ∀A ⊆ Ω. (2)
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To make a decision, a mass function can also be transformed into a pignistic
probability distribution [16]. Finally, a hard credal partition can be obtained by
assigning each object to the subset of cluster with the highest mass. This allows
us to easily detect objects located in an ambiguous region.

2.2 Evidential C-Means algorithm

Evidential C-Means (ECM) [14] is the credibilistic version of Fuzzy C-Means
algorithm (FCM) [5]. In the FCM algorithm, each cluster is represented by a
point called centroid or prototype. The ECM algorithm, which generates a credal
partition, generalizes the cluster representation by considering a centroid vk in
Rp for each subset Ak ⊆ Ω. The objective function is:

JECM(M,V) =

n∑
i=1

∑
Ak 6=∅

|Ak|αmβ
ikd

2
ik +

n∑
i=1

ρ2mβ
i∅, (3)

subject to ∑
Ak⊆Ω,Ak 6=∅

mik +mi∅ = 1 and mik ≥ 0 ∀i ∈ {1, . . . , n}. (4)

where |Ak| corresponds to the cardinality of the subset Ak, V is the set of
prototypes and d2ik represents the squared Euclidean distance between xi and
the centroid vk. Outliers are handled with masses mi∅,∀i ∈ 1, . . . , n, allocated
to the empty set and with the ρ2 > 0 parameter. The two parameters α ≥ 0 and
β > 1 are introduced to penalize the degree of belief assigned to subsets with
high cardinality and to control the fuzziness of the partition.

An extension of the ECM algorithm has been proposed in order to deal
with a Mahalanobis distance [4]. Such metric is adaptive and handles various
ellipsoidal shapes of clusters, giving more flexibility for the algorithm to better
find the inherent structure of the data. Mahalanobis distance d2ik between a point
xi and a subset Ak is defined as follows:

d2ik = ‖xi − vk‖2Sk
= (xi − vk)

T
Sk (xi − vk) , (5)

where Sk represent the evidential covariance matrix associated to subset Ak
and is calculated as the average of the covariance matrices of the singletons
included in subset Ak. Finally, objective function (3) has to be minimized with
the respect to the credal partition matrix M, the centroids matrix V and the
covariance matrix S = {S1, . . . ,Sc} the set composed of covariance matrices
dedicated to clusters.

2.3 Evidential constrained C-Means algorithm

Several evidential C-Means based algorithms have already been proposed [1,2,3,4,8,13]
to deal with background knowledge. For each of them, constraints are expressed
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in the framework of a belief function and a term penalizing the constraints vio-
lation is incorporated in the objective function of the ECM algorithm.

In [2,3], labeled data constraints are introduced in the algorithms, i.e. the
expert can express the uncertainty about the label of an object by assigning
it to a subset. Objective functions of the algorithms are written in such a way
that any mass function which partially or fully respects a constraint on a specific
subset has a high weighted plausibility given to a singleton included in the subset.

Tij = Ti (Aj) =
∑

Aj∩Al 6=∅

|Aj ∩Al|
r
2

|Al|r
mil, ∀i ∈ {1 . . . n}, Al ⊆ Ω, (6)

where r ≥ 0 is a fixed parameter. Notice that if r = 0, then
|Aj∩Al|

r
2

|Al|r = 1, which

implies that Tij is identical to the plausibility plij .
In [4], authors assumed that pairwise constraints (i.e. must-link and cannot-

link constraints) are available. A plausibility to belong or not to the same class
is then defined. This plausibility allows us to add a penalty term having high
values when there exists a high plausibility that two objects are (respectively are
not) in the same cluster although they have a must-link constraint (respectively
a cannot-link constraint).

pll×j(θ) =
∑

{Al×Aj⊆Ω2|(Al×Aj)∩θ 6=∅}

ml×j(Al ×Aj)

=
∑

Al∩Aj 6=∅

ml(Al)mj(Aj),
(7)

pll×j(θ) = 1−ml×j(∅)− bell×j(θ)

= 1−ml×j(∅)−
c∑

k=1

ml (Ak)mj (Ak) ,
(8)

where, θ denotes the event that objects xi and xj belong to the same class
corresponds to the subset {(ω1, ω1), (ω2, ω2), . . . , (ωk, ωk)} within Ω2, whereas
θ denotes the event that objects xi and xj do not belong to the same class
corresponds to its complement.

3 The LPECM algorithm with instance-level constraints

3.1 Objective function

We propose a new algorithm called Labeled and Pairwise constraints Eviden-
tial C-Means (LPECM), which is based on the ECM algorithm [14], handles
Mahalanobis distance and combines the advantages of pairwise constraints and
labeled data constraints by adding three penalty terms:

JLPECM (M,V,S) = ξJECM (M,V,S) + γJM (M) + ηJC (M) + δJL (M), (9)
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with respect to constraints (4). Formulation of JECM corresponds to equation
(3) and (5), JM is a penalty term used for must-link constraints, JC is dedicated
to cannot-link constraints and JL handles labeled data constraints. Coefficients
ξ, γ, η and δ allow us to give more importance to the structure of the data, the
pairwise constraints or the labeled data constraints, respectively.

Penalty terms for pairwise constraints and labeled data constraints are de-
fined similarly to [2,4]:

JM (M) =
∑

(xi,xj)∈M

1− (mi∅ +mj∅ −mi∅mj∅)−
∑

Ak⊆Ω,|Ak|=1

mikmjk

 ,

(10)

JC (M) =
∑

(xi,xj)∈C

∑
Ak∩Al 6=∅

mikmjl, (11)

JL (M) =

n∑
i=1

∑
Ak⊆Ω,Ak 6=∅

bik

1−

 ∑
Ak∩Al 6=∅

|Ak ∩Al|
r
2

|Al|r
mil

 , (12)

where bik denotes whether the ith instance belongs to the subset Ak or not:

bik =

{
1 if xi is constrained to subset Ak,
0 otherwise.

(13)

It should be emphasized that in this study, unlike [2], each labeled object
is constrained to only one subset. Indeed, it makes more coherent the set of
constraints retrieved from the background knowledge. Constraints are gathered
in three different sets such that M corresponds to the set of must-link con-
straints, C to the set of cannot-link constraints and L denotes the labeled data
constraints set. The JM function returns the sum of the plausibilities that must-
link constrained objects to belong to the same class. Similarly, JC returns the
sum of the plausibilities that cannot-link constrained objects are not in the same
class. The JL term calculates for each labeled object a weighted plausibility to
belong to the label.

3.2 Optimization

The objective function is minimized as the ECM algorithm, i.e. by carrying out
an iterative scheme where first V and S are fixed to optimize M, second M and
S are fixed to optimize V and finally M and V are fixed to optimize S.

Centroids optimization It can be observed from (9) that the three penalty
terms included in the objective function of the LPECM algorithm do not depend
on the cluster centroids. Hence, the update scheme of V is identical to the ECM
algorithm [14].
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Masses optimization In order to obtain a quadratic objective function with
linear constraints, we set parameter β = 2. A classical optimal approach can
then be used to solve the problem [7]. The following equations present how to
transform the objective function (9) in order to obtain a format accepted by
most usual quadratic optimization function.

Let us define mT
i = (mi∅,miω1

, . . . ,miΩ) the vector of masses for object xi.
The first term of JLPECM is then:

JECM (M) =

n∑
i=1

mT
i Φimi, (14)

where Φi =
[
φikl
]

is a diagonal matrix of size (2c × 2c) associated to object xi
and defined such as:

φikl =

ρ2 if Ak = Al and Ak = ∅,
d2ik |Ak|

α
if Ak = Al and Ak 6= ∅,

0 otherwise.
(15)

Penalty term used for must-link constraints can be rewritten as follows:

JM (M) = nM +
∑

(xi,xj)∈M

(
FTM mi + FTM mj

)
+

∑
(xi,xj)∈M

mT
i ∆M mj , (16)

where nM denotes the number of must-link constraints, FM is a vector of size
2c and ∆M =

[
δM
kl

]
corresponds to a matrix (2c × 2c) such that:

FTM = [−1, 0, . . . , 0]︸ ︷︷ ︸
2c

and δM
kl =

1 if Ak = ∅ or Al = ∅,
−1 if Ak = Al and |Ak| = |Al| = 1,
0 otherwise.

(17)
The penalty term associated to cannot-link constraints is:

JC (M) =
∑

(xi,xj)∈C

mT
i ∆C mj , (18)

where ∆C =
[
δC
kl

]
is a matrix (2c × 2c) such that:

δC
kl =

{
1 if Ak ∩Al 6= ∅,
0 otherwise.

(19)

Finally, the penalty term for the labeled data constraints is denoted as fol-
lows:

JL (M) = nL −
n∑
i=1

FTL mi, (20)
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where nL denotes the number of labeled data constraints and FL is a vector of
size 2c such that:

FTL = viklclk, ∀Al ∈ Ω, (21)

clk =
|Ak ∩Al|

r
2

|Al|r
, (22)

vikl =

{
1 if (xi, Ak) ∈ L and Ak ∩Al 6= ∅,
0 otherwise.

(23)

where expression (xi, Ak) ∈ L means that the labeled data constraint on object
i is the subset Ak. Function vikl = {0, 1} equals to 1 for subsets Al that has an
intersection with Ak knowing the constraint xi ∈ Ak.

Now, let us define mT =
(
mT

1 , . . . ,m
T
n

)
the vector of size n2c containing the

masses for each object and each subset, H a matrix of size (n2c × n2c) and F a
vector of size n2c such that:

H =


Φ1 ∆12 · · ·∆1n

∆21 Φ2 · · ·
...

...
. . .

...
∆n1 · · · Φn

 , where ∆ij =


∆M , if (xi,xj) ∈M ,

∆C , else if (xi,xj) ∈ C ,

0, otherwise.

(24)

FT =
(
F1 · · · Fi · · · Fn

)
, where Fi = tiFM − biFL , (25)

ti =

{
1, if xi ∈M ,

0, otherwise.
, and bi =

{
1, if xi ∈ L ,

0, otherwise.
. (26)

Finally, the objective function (9) can be rewritten as follows:

JLPECM (M) = mTHm + FTm. (27)

3.3 Metric optimization

It can be observed from (9), the three penalty terms of the LPECM algorithm
objective function do not depend on the Mahalanobis distance. Since the set of
metric S only appears in JECM , the update method is identical to the ECM
algorithm [4]. The overall procedure of the LPECM algorithm is summarized in
Algorithm 1.

4 Experiments

4.1 Experimental protocols

Performances and time consumption of the LPECM algorithm have been tested
on a toy data set and several classical data sets from UCI Machine Learning
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Algorithm 1 The LPECM algorithm with an adaptive metric

Require: c: Number of desired clusters; X = (x1, . . . ,xn) the data set; C : Set of
cannot-link constraints ; M : Set of must-link constraints ; L : Set of labeled data
constraints ;

Ensure: credal partition matrix M, centroids matrix V, distance metric matrix S
1: Initialization of V ;
2: repeat
3: Calculate the new credal partition matrix M by solving the quadratic program-

ming problem defined by (27) subject to (4);
4: Calculate the new centroids matrix V by solving the linear system defined as

in the ECM algorithm [14];
5: Calculate the new metric matrix S and new associated distances using [4];
6: until No significant change in V between two successive iterations;

Repository [9]. For the Letters data set, we kept only the three letters {I,J,L}
as done in [6]. As in [14], fixed parameters associated to the ECM algorithm
were set such as α = 1, β = 2 and ρ2 = 100. In order to balance the importance
of the data structure, must-link constraints, cannot-link constraints and labeled
data constraints respectively, we respectively set ξ = 1

n2c , γ = 1
|M | , η = 1

|C | and

δ = 1
|L | as coefficients.

Experiment on a data set consists of 20 simulations with a random selection
of the constraints. For each simulation, five runs of the LPECM algorithm with
random initialization of the centroids are performed. Then, in order to avoid
local optimum, the clustering solution with the minimum value of the objective
function is selected.

The accuracy of the obtained credal partition is measured with the Adjusted
Rand Index (ARI) [12], which is the corrected-for-chance version of the Rand
Index that compares a hard partition with the true partition of a data set.
As a consequence, the credal partition generated by the LPECM algorithm is
first transformed into a fuzzy partition using the pignistic transformation and
then the maximum of probability on each object is retrieved to obtain a hard
partition.

4.2 Toy data set

In order to show the interest of the LPECM algorithm, we started our experi-
ments with a tiny synthetic data set composed of 15 objects and three classes.
Fig. 1 presents the hard credal partition obtained using the ECM algorithm. Big
cross marks denote the centroid of each cluster. Centroids for subsets with higher
cardinalities are not represented to ease the reading. As it can be observed, ob-
jects located between two clusters are assigned in subsets with cardinality equal
to two. Notice also that, due to the stochastic initialization of the centroids, there
may exist a small difference between the results obtained from every execution of
the ECM algorithm. After the addition of background knowledge in the form of
must-link constraints, cannot-link constraints and labeled data constraints and
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Fig. 1. Hard credal partition obtained on
Toy data set with the ECM algorithm
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Fig. 2. Hard credal partition obtained on
Toy data set with the LPECM algorithm

the execution of the LPECM algorithm with a Euclidean distance, it is inter-
esting to observe that previous uncertainties have vanished. Fig. 2 presents the
hard credal partition obtained. The magenta dashed line describes cannot-link
constraints, the light green solid line represents must-link constraints and the
circled point corresponds to the labeled data constraints .

Fig. 3 illustrates, for the execution of the LPECM algorithm, the mass dis-
tribution for singletons with respect to the point numbers, allowing us a more
distinct sight of the masses allocations. Table 1 displays the accuracy as well
as time consumption for the ECM algorithm and the LPECM algorithm when
first only the cannot-link constraint is incorporated, second when the cannot-link
and the must-link constraint are introduced (Cannot-Must-Link line in Table 1),
finally when all constraints are added (Cannot-Must-Labeled line in Table 1).
Our results demonstrate that the combination of pairwise constraints and labeled
data constraints improved the performance of the semi-clustering algorithm with
tolerable time consumption. As expected, the more constraints are added, the
better are the performance.

4.3 Real data sets

The LPECM algorithm has been tested on three known data sets from the
UCI Machine Learning Repository namely Iris, Glass, and Wdbc and a derived
Letters data set from UCI. Table 2 indicates for each data set its number of
objects, its number of attributes and its number of classes.

For each data set, we randomly created 5%, 8%, and 10% of each type of
constraints out of the whole objects, leading to a total of 15%, 24%, and 30%
of constraints. As an example, Fig. 4 shows the hard credal partition obtained
with the Iris data set after executing the LPECM algorithm with a Mahalanobis
distance and 24% of constraints in total. As can be observed, all the constrained
objects are clustered with certainty in a singleton. Ellipses represent the covari-
ance matrices obtained for each cluster.
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Fig. 3. Mass curve obtained on Toy data
set with the LPECM algorithm

Table 1. Performance obtained on toy data
set with the LPECM algorithm

ARI Time(s)

ECM 0.60 0.07
LPECM-Cannot 0.68 0.41
LPECM-C-Must 0.85 0.29
LPECM-C-M-labeled 1.00 0.22

Table. 3 and 4 illustrates for all data sets the accuracy results with a Eu-
clidean and a Mahalanobis distance respectively when the different percentage
of constraints are employed. Mean and standard deviation are calculated over
20 simulations. As it can be observed, incorporating constraints lead most of the
time to significant improvement of the clustering solution. Using a Mahalanobis
distance particularly help to achieve better accuracy than using a Euclidean
distance. Indeed, the Mahalanobis distance corresponds to an adaptive metric
giving more freedom than a Euclidean distance to respect the constraints while
finding a coherent data structure.

Table 2. Description of the data sets from
UCIMLR

Name Objects Attributes Clusters

Iris 150 4 3

Letters 227 16 3

Wdbc 569 31 2

Glass 214 10 3
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-1

0

1

2

3

ω
1

ω
2

ω
3

Fig. 4. Hard credal partition obtained on
Iris data set with the LPECM algorithm
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Table 3. LPECM’s performance (ARI) with Euclidean distance

ECM
LPECM

5.00% 8.00% 10.00%
Iris 0.59±0.00 0.70±0.01 0.71±0.00 0.70±0.01

Letters 0.04±0.01 0.09±0.03 0.09±0.04 0.10±0.02

Wdbc 0.67±0.00 0.71±0.00 0.71±0.01 0.71±0.00

Glass 0.59±0.07 0.60±0.07 0.62±0.06 0.65±0.08

Table 4. LPECM’s performance (ARI) with Mahalanobis distance

ECM
LPECM

5.00% 8.00% 10.00%
Iris 0.67±0.01 0.71±0.05 0.82±0.01 0.83±0.04

Letters 0.08±0.01 0.45±0.03 0.47±0.02 0.60±0.05

Wdbc 0.73±0.02 0.74±0.03 0.75±0.02 0.77±0.05

Glass 0.56±0.03 0.60±0.03 0.65±0.02 0.65±0.03

For the time consumption, as it can be observed from Fig. 5, (1) Adding con-
straints gives higher computation time than no constraints. (2) most of the time,
the more constraints are added, the less time is needed to finish the computation.

percentage of constraints
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Fig. 5. Time consumption (CPU) of the LPECM algorithm with Euclidean distance

5 Conclusion

In this paper, we introduced a new algorithm named Labeled and Pairwise con-
straints Evidential C-Means (LPECM). It generates a credal partition and mixes
three main types of instance-level constraints together, allowing us to retrieve
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more constraints from the background knowledge than other semi-supervised
clustering algorithms. In addition, the framework of belief function employed
in our algorithm allows us (1) to represent doubts for the labeled data con-
straints (2) to clearly express, with the credal partition as a result, the uncer-
tainties about the class memberships of the objects. Experiments show that the
LPECM algorithm does obtain better accuracy with the introduction of con-
straints, particularly with a Mahalanobis distance. Further investigations have
to be performed to fine-tune parameters and to study the influence of the con-
straints on the clustering solution. The LPECM algorithm can also be applied for
a real application to show the interest in gathering various types of constraints.
In this framework, active learning schemes, which automatically retrieve few in-
formative constraints with the help of an expert, are interesting to study. Finally,
in order to scale and fast the LPECM algorithm, a new minimization process
can be developed by relaxing some optimization constraints.
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