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Abstract— We present a temporal Bayesian filter for semantic
segmentation of a video sequence. Each pixel is a random
variable following a discrete probabilistic distribution func-
tion representing possible semantic classes. Bayesian filtering
consists in two main steps: 1) a prediction model and 2) an
observation model (likelihood). We propose to use a data-
driven prediction function derived from a dense optical flow
between images t and t + 1 achieved by a deep neural
network [1]. Moreover, the observation function uses a semantic
segmentation network. The resulting approach is evaluated on
the public dataset Cityscapes. We show that using the temporal
filtering increases the accuracy of the semantic segmentation.

I. INTRODUCTION
Semantic segmentation becomes a very popular task in

many applications such as posture recognition, face parsing
or autonomous driving. It consists in associating a semantic
class (for instance road, sidewalk, rider, car, etc.) to each
pixel of an image. This information may then be used
for trajectory planning or obstacles avoidance. The current
state of the art methods use Deep Neural Convolutional
Networks (DCNN) [2], [1], [3]. Most of the conventional
segmentation networks do not take into account the tem-
poral link between images and process all images from a
sequence as independent images. In this paper, we propose
to express the semantic segmentation of video-sequences
as a filtering problem. Each pixel is a random variable.
A recursive Bayesian filter implementation is proposed to
allow a continuous integration of the temporal information
and to improve segmentation consistency (see Figure 1).
The prediction function is achieved by a data-driven model
(optical flow network) and the observation function uses
a semantic segmentation network. To summarize, the main
contributions of this work are:
• a formulation of semantic segmentation of a video

sequence as a Bayesian filter,
• a data-driven prediction function using a dense optical

flow network,
• an evaluation of the filter on the public dataset

Cityscapes.
First, the last advances in the field of semantic segmen-

tation will be detailed. Then, the structure of the proposed
Bayesian filter and the modeling of temporal information
will be presented. After that, our optical flow model will be
described. In this part, a method to detect wrong temporal
information (due to objects appearances/disappearances) so
that only relevant information is utilized will also be detailed
and analyzed. Finally, we will present the evaluation results
of the filter on Cityscapes dataset.

Fig. 1: Structure of the proposed Recursive Bayesian Filter

II. RELATED WORK

This section reports some recent advances in the field of
semantic segmentation and more precisely in the field of
video semantic segmentation.

Several DCNN models have been proposed for conven-
tional semantic segmentation. Among them, the PSPNet
(Pyramid Scene Parsing Network) [1] is based on a multi-
scale analysis and information fusion. Therefore, this net-
work allows the understanding of both the general context
and the local contexts and details which leads to a better
scene understanding. The DeepLab network [3] stands out
by the use of atrous convolutions to take into account
the widest context. The latest results from high-frequency
networks such as BiSeNet [4] show that real-time use of
these networks becomes possible with a high accuracy.

In the case of video segmentation, these networks do
not take into account the temporal information contained
in the image sequences. Each image is processed as if it
were independent from others. This is why approaches have
been developed to take into account the temporal link and
to improve segmentation consistency.

Long Short Term Memory networks (LSTM) enable a
transfer of temporal information. They are already used in
video classification tasks [5]. In this case the LSTMs are
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associated with Convolutional Neural Networks (CNN) in
the form of hybrid networks where the LSTMs networks
take into consideration the previous outputs of the CNNs to
create a temporal link. Recurrent networks can also be used
for semantic video segmentation [6] [7] [8] but their accuracy
is lower than conventional segmentation networks accuracy.

Temporal information are sometimes explicitly utilized
through optical flow. In [9], the segmentation algorithm
is applied only at regular intervals and the optical flow
enables a set of predictions on all images located between
two segmented images. The optical flow is used to prop-
agate segmentation on unprocessed images. Since optical
flow estimation is faster than the segmentation process, this
method can speed up the processing but doesn’t improve
segmentation. In [10] internal feature maps are propagated
during the following image processing with the optical flow
estimation. [11] presents a similar method since the feature
maps corresponding to certain keyframes, where the seg-
mentation is obtained through a conventional segmentation
network, are propagated to speed up the processing of other
images. Movement estimation is no longer done via the
optical flow but via Block Motion Vectors.

Some works aim to predict segmentation according to the
kinematics [12] or the dynamics of the video [13]. In [12],
the evolution of the optical flow in consecutive images is
used to predict future segmentation. In [13], a network learns
to recognize the 3D dynamics of the video in order to predict,
up to half a second in advance of the image capture, the scene
segmentation. This type of prediction is more accurate than
optical flow predictions but has a high computational cost.

In summary, semantic video segmentation is still a very
challenging problem. Most semantic video segmentation
approaches consist in getting single-frame predictions using
a neural network. Then, this information is propagated using
optical flow or LSTM to make the result temporally more
consistent. Previous approaches use temporal information on
a small time lapse and present a lack of precision when
the scene is complex, with moving objects and significant
occlusions. The proposed method is different from other
methods as spatio-temporal data is integrated all along the
segmentation process with a recursive Bayesian filter (III)
without being influenced by objects’ movements and occlu-
sions using the direct flow detection (IV).

III. RECURSIVE BAYESIAN FILTER FOR SEMANTIC
SEGMENTATION

This section details the proposed Bayesian filtering frame-
work for temporal semantic segmentation (see Figure 1).

Let I .
= {It}k=1,...T be a temporal set of images extracted

from the input video sequence. Let It(u) be the value of the
u = (x, y)> pixel (gray level or colour) of an image t.

The semantic segmentation aims at estimating the seman-
tic class of each pixel of the video sequence. Let Yu,t ∈
{1, ...N} be a discrete random variable representing the
semantic label (class) associated to the pixel It(u).

The probability function p(Yu,t|It) at iteration t is given
by the following equation:

p(Yu,t|It)
.
=

1

N

N∑
n=1

qu,t(n)δn(Yu,t) (1)

where qu,t(n) is the probability that the pixel It(u) belongs
to the class n. δn(Yu,t) is the delta Kronecker function1.
Qt(u, n) denotes the tensor of the probability values asso-
ciated to the image It such as Qt(u, n) = qu,t(n). The
global filter equation, given the present state according to
the previous one is:

p(Yu,t|It) ∝

p(It|Yu,t)
∑

Yu,t−1

p(Yu,t|Yu,t−1)p(Yu,t−1|It−1)dYu,t−1 (2)

The resolution of this equation is divided into two main steps:
prediction and update. The prediction step is solved using the
Chapman-Kolmogorov equation:

p(Yu,t|It−1) =
∑

Yu,t−1∈{1,..,N}

p(Yu,t|Yu,t−1)p(Yu,t−1|It−1)

(3)
We propose to compute the proposal discrete probability
distribution p(Yu,t|It−1) from a dense optical flow deep
neural network (Figure 1) that estimates ∆u,t (the motion
of the pixel It(u) between t− 1 and t):

p(Yu,t|It−1) = p(Y(u−∆u,t),t−1|It−1) (4)

We shall denote Q̃t(u, n) the tensor with the predicted
probabilities:

Q̃t(u, n) = Qt−1(u−∆u,t, n) (5)

This is the result of warping operation in Figure 1. Proba-
bility distributions from previous pixels (u−∆u,t) that do
not belong to the image are initialised with a uniform law.

The second step is the update step, using a likelihood
function and the Bayes rule:

p(Yu,t|It) ∝ p(It|Yu,t)p(Yu,t|It−1). (6)

We propose to use a discriminative semantic segmentation
deep neural network (see Figure 1) that provides a score
associated to each class in the tensor Zt(u, n). We propose
here to use classes scores directly as the likelihood function:

p(It|Yu,t) ∝ Zt(u, Yu,t). (7)

The resulting posterior (Segmentation Update, Figure 1) is
then expressed by:

p(Yu,t|It) ∝
1

N

N∑
n=1

Q̃t(u, n)Zt(u, n)δn(Yu,t) (8)

1In probability theory and statistics, the Kronecker delta and Dirac
delta function can both be used to represent a discrete distribution. If
the support of a distribution consists of points x = {x1, ..., xn}, with
corresponding probabilities p1, ..., pn, then the probability mass function
p(x) of the distribution over x can be written, using the Kronecker delta, as
p(x) =

∑n
i=1 piδxxi . For visibility reason, we will write: δxxi = δx(xi)
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IV. OPTICAL FLOW MODEL

Here we detail the optical flow model used in the filter
(Optical flow Network with Warping operation in Figure 1).

We assume that in a video sequence, the frames are
fairly close to each other so that the brightness changes
and the point of view modifications are small enough not to
significantly impact the quality of the optical flow estimation
and therefore the warping operation quality. It means that the
displacement of the camera between two frames must be less
than a few meters which is not a strong constraint.

Because of objects displacements, hidden areas on a frame
may appear in the next frame and visible areas, on the con-
trary, may disappear. This phenomenon is significant because
of the possible appearance of ”ghosts” after the warping
operation (see the Predicted Images in Figure 2). Note that
images are used instead of probabilities distributions to show
the copies. The frame at time (t-1) was warped using the
optical flow to predict the frame at time (t) (details about
the warping operation are given in the following paragraphs).
The errors are located especially at the moving objects edges.
Their surface area is small compared to the image size but
it has an impact on the results as it will be shown in V.

Two types of optical flow can be computed, the direct flow
and the reverse flow. The direct flow is the optical flow from
the image at time t−1 (It−1) to the image at time t (It), and
vice versa for the reverse flow. These two flows have very
different properties in the case of a prediction from t − 1
to t, which is the purpose of the warping operation. Indeed,
the domains and codomains of the two warping functions
are different as the optical flows are computed in opposite
directions with the direct and inverse flow.

The optical flow used in our prediction function is a
dense optical flow. The output of the optical flow must be a
dense matrix giving the displacement of each pixel of image
It between t − 1 and t. Standard optical flow algorithms
[14][15][16], when given a couple (I1, I2) as input, provide
the output dense matrix of motion for each pixel of I1
towards I2. However, in our case an output dense matrix
of motion for each pixel I2 from I1 is necessary. This is
why the reverse flow is used for the prediction.

The reverse warping operation therefore consists in locat-
ing the pixels of frame t− 1 which most closely match the
pixels of frame t and then move the distributions to their
position at time t. Problems occur when pixels in frame t
do not match any pixel of frame t − 1, for example, when
a moving object reveals a portion of the scene that was
invisible on the previous frame. The optical flow associated
with the pixels in these zones is the same as the direct
environment optical flow (mostly the background which does
not move). The distributions in these areas will therefore
be the distributions at time t − 1 at these same positions.
However, in the image t − 1, these areas are masked by
objects. This implies that the distributions associated with
the objects will be transferred to areas where the object is no
longer present. Objects copies may therefore appear (Figure
2).

The purpose of the prediction in our model is to bring
coherence to the segmentation process. The prediction must
therefore not convey wrong information. To avoid these
wrong information problems, the direct optical flow is also
used. The direct optical flow connects the pixels from frame
t−1 to those from frame t. The pixels that appear in frame t
are not connected to any pixel from frame t−1 and therefore,
they are easy to detect.

The direct flow is therefore utilized to avoid occlusions and
objects copies problems. A high-amplitude noise is added
to these areas to simulate a uniform distribution (after a
renormalization of the distributions) and therefore bring no
information. Examples of errors detection, i.e. areas where
the prediction is impossible due to objects appearances, with
the direct flow are shown on Figure 3. The detections are
efficient but there are some false positives (pixels wrongly
associated to appearing objects). As the purpose of this
method is to unable the transmission of wrong information,
these false positives are not critical. Nevertheless, it is neces-
sary to avoid false negatives (pixels from appearing objects
associated to already existing objects) that are fortunately
less numerous. Effects of the false negatives are studied
in Part V-C when the noise is set to 0. In this case, the
predictions are always taken into account even if the objects
appeared for the first time on the image.

V. EXPERIMENTS

In the following, implementation details of the approach
are described, as well as the training data and the evalu-
ation metrics. Finally, the performance of this approach is
discussed.

A. Implementation details

The implementation is based on the public library Tensor-
Flow [17]. Spatial dependencies (relations between pixels
at fixed time in an image) are modeled by a CNN and
temporal ones (relations between pixels intensity through
time) are established by optical flow. In this work, consid-
ering efficiency and accuracy, a PWC-Net [1] was selected
as the baseline for flow estimation (temporal dependencies).
To show the efficiency of the method, spatial dependencies
are modeled by several segmentation networks: PSPNet [1],
DeepLab101 [3], DeepLab50 [3] and BiSeNet [4]. These
networks enable an evaluation of the method performance
for different baselines.

All the experiments and runtime analyses are performed
using a Nvidia GTX Titan X 12 Gb and Intel Core i7-6700K
4.0GHz machine. Pretrained models are used for both optical
flow and segmentation networks. As the optical flow network
is much faster than the segmentation network, the speed of
the whole filter including both networks is similar to the
speed of the segmentation network alone.

B. Data set and evaluation metrics

To evaluate our proposed framework, an extensive eval-
uation on the data set CityScapes [18] is performed. The
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Image (t-1) Image (t) Predicted Image (t)

Fig. 2: Example of artifacts due to warping operation on Cityscapes data set

Image (t-1) Image (t) Predicted Image (t) Artifacts detection

Fig. 3: Examples of artifacts detection with direct optical flow in Cityscapes data set

predicted segmentation maps resulting from our method
are evaluated using the mean Intersection over Union[18]
(mIoU) on the validation set. The results with temporal
consistency are then compared to the baseline method where
the predictions are performed per image.

Cityscapes[18] Data set: The Cityscapes data set focuses
on street-scene segmentation and autonomous driving. All
images are captured from a moving vehicle in various condi-
tions and cities. It contains snippets of street scenes collected

from 50 different cities with a resolution of 2048 × 1024
pixels. The training, validation, and test sets respectively
contain 2975, 500, and 1525 snippets. Each snippet has
30 images, where the 20th image is annotated with pixel-
level ground-truth labels for semantic segmentation with 19
categories for evaluation (see Table IV for the details of the
different categories).
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Image (t) Segmentation groundtruth (t) Segmentation with noise=0 Segmentation with noise=0.2

Fig. 4: Visual results on Cityscapes dataset for different noise values

Prediction Noise 0 0.05 0.1 0.15 0.2 0.25 Segmentation Network alone
mIoU Filter + PSP-Net 72.60 77.41 77.45 77.43 77.39 77.36 76.40

mIoU Filter + DeepLab101 73.23 78.80 78.93 78.98 79.00 78.99 78.67
mIoU Filter + DeepLab50 68.01 72.09 72.11 72.09 72.07 71.94 71.35

mIoU Filter + BiSeNet 54.62 57.01 56.90 56.81 57.55 56.66 56.11

TABLE I: Influence of the prediction noise on the mIoU

Prediction Noise 0 0.05 0.1 0.15 0.2 0.25
mIoU Filter + PSP-Net 62.43 77.27 77.38 77.38 77.36 77.33

mIoU Filter + DeepLab101 63.03 78.62 78.82 78.90 78.94 78.96
mIoU Filter + DeepLab50 59.02 71.88 71.99 72.01 72.00 71.99

mIoU Filter + BiSeNet 48.50 56.87 56.82 56.75 56.69 56.63

TABLE II: Influence of the prediction noise on the mIoU without direct flow detection

Network used in the filter PSPNet[1] DeepLab101[3] DeepLab50[3] BiSeNet[4]
Direct flow impact 6.7% 18.2% 15.8% 59.7%

TABLE III: Proportion of mIoU improvement due to the direct flow detection

C. Prediction uncertainty

To model the uncertainty on the segmentation prediction,
a noise is added to the probability distributions. They are
then renormalized to ensure that the resulting distributions
are still probability distributions (before the Segmentation
Update in Figure 1). This noise makes the balance between
the observation (segmentation network) and the segmentation
prediction with the optical flow. The higher the noise, the
more the segmentation network will influence the result and
the less the temporal information will be taken into account.
As the prediction is less precise than the observation and
depends on the optical flow estimation, if the noise value is
too small, some artifacts due to a wrong flow estimation
may appear (see Figure 4). This leads to an important
loss of global segmentation precision. That’s why the noise
value must not be randomly selected. Table I presents the

influence of the noise value on the final mIoU for different
segmentation networks. The maximum precision is reached
for noise values between 0.1 and 0.2. Choosing a constant
noise of 0.2 assures an optimal improvement for all types
of networks. The noise used is the same for each class.
Some studies have been carried out to evaluate the noise
for each class separately (by computing the mIoU of a
groundtruth prediction) but the results did not lead to a
significant precision improvement.

D. Warping and direct flow detection

In the following, the results of an ablation study on the
direct flow detection during reverse warping operation are
presented.

The mIoU on Cityscapes validation set with the direct flow
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PSPNet
[1]

97.3 81.6 91.8 58.1 61.3 55.6 67.9 75.5 91.6 63.2 94.0 79.1 60.4 93.7 74.1 86.1 81.5 63.3 75.3

Filter +
PSPNet[1]

97.4 82.0 92.2 59.0 64.3 57.2 68.9 77.2 91.9 63.9 94.1 79.6 62.0 93.9 75.8 86.9 83.0 66.3 75.9

TABLE IV: Per-class IoU of the PSPNet (with and without filter) on Cityscapes dataset

detection (Table I) was already computed for different noise
values. Now, the mIoU without this detection (Table II) is
computed for the same noise values. When the noise is equal
to 0 the influence is maximum. The detection improves the
mIoU of 10% for the PSP-Net[1] and the DeepLab101[3] for
example. This comes from the side effects of the temporal
information whose quality rapidly decreases. As the noise
is null, the segmentation network has a minimum influence
on the result and, therefore, cannot correct the resulting seg-
mentation. When the temporal information is filtered with the
direct flow detection, the prediction quality is better and the
results are, therefore, better. As the noise increases, temporal
information will have less and less impact on the result.
Therefore, the improvement due to the defaults detection will
become negligible. When the noise is small, a defect on an
image may have an impact on the segmentation one second
after. But with a higher noise, the defects only have influence
on the results when they appear directly on the studied
frame or right before it. As the area per frame which may
cause defaults is relatively small, the impact is mechanically
lowered. That is why the improvement due to the detection
lies between less than 0.1% for the DeepLab101[3] and 1%
for the BiSeNet[4] when the offset linked to the highest
mIoU value is used.

Table III presents the proportion of the mIoU improvement
due to the direct flow detection for each studied segmentation
network. It represents more than 15% for the DeepLab mod-
els and the BiSeNet[4]. The detection method is therefore
efficient and has a significant impact on the results.

E. Results

The proposed filter enhances the segmentation consistency
and the precision. The results in Table I show that the global
mIoU increases approximately of 1% with some variations
due to the segmentation network. The lower the segmentation
network mIoU, the higher this increase. It reaches 1.6% for
a low precision BiSeNet[4]. The extended results for all 19
classes show that the mIoU per class is systematically better
with our filter than with the segmentation network alone (ex-
ample with PSPNet[1] results on Figure IV). In particular, the
highest increases concern the low mIoU classes (wall, fence,
pole, traffic sign...) where it often reaches between 2 and 3%.
Therefore, temporal information enables a better detection
of small objects but it also improves the detection of high

mIoU classes (building, sky, cars...) which correspond to the
backgrounds. Choosing a constant offset of 0.2 ensures the
best global results for all the tested segmentation networks.
Therefore, it is not valuable to test different offset values.

VI. CONCLUSION

A spatio-temporal filter is introduced to improve semantic
video segmentation through the use of temporal information.
Our objective is, therefore, to couple the decisions taken by
a CNN with the temporal coherence in video images via
optical flow. The optical flow is used to predict a semantic
segmentation and the CNN is considered as the observator
which will substantiate, or not, the prediction. Temporal
information is therefore integrated to correct segmentation
estimation. Temporal information is filtered with a new direct
flow detection method.

The Bayesian filter enhances segmentation precision by
approximately 1% for all the tested segmentation networks
even for the high precision networks. The most important
accuracy improvement is observed for the least well-detected
classes (fence, pole, traffic sign...) where this enhancement
can reach 3 or 4% (Table IV). A new prediction refinement
method was also developed to transmit only valuable tem-
poral information.

Futur works include: 1) merging the two networks (seg-
mentation and optical flow) into one multitask deep con-
volutional network and 2) estimating the accuracy of the
segmented map by changing the softmax layer by a
modified version.
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