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Abstract—Hard and fuzzy clustering algorithms are part of
the partition-based clustering family. They are widely used in
real-world applications to cluster numerical and categorical data.
While in hard clustering an object is assigned to a cluster with
certainty, in fuzzy clustering an object can be assigned to different
clusters given a membership degree. For both types of method an
entropy can be incorporated into the objective function, mostly to
avoid solutions raising too much uncertainties. In this paper, we
present an extension of a fuzzy clustering method for categorical
data using fuzzy centroids. The new algorithm, referred to as
Categorical Fuzzy Entropy (CFE), integrates an entropy term in
the objective function. This allows a better fuzzification of the
cluster prototypes. Experiments on ten real-world data sets and
statistical comparisons show that the new method can efficiently
handle categorical data.

Index Terms—clustering, fuzzy C-means, categorical data,
entropy, fuzzy centroids

I. INTRODUCTION

Clustering is a popular unsupervised learning method that aims
at grouping data objects such that similar data belong to the
same group (cluster) and dissimilar data to different groups.
Clustering methods are generally categorized in three families:
hierarchical, density-based and partition-based. In hierarchi-
cal clustering data objects are clustered using hierarchy of
clusters by either agglomerative (bottom-up) or divisive (top-
down) strategies. Density-based clustering are spatial cluster-
ing methods that group data given the most dense regions.
In partition-based clustering methods a cluster membership
partition which can be either hard or fuzzy is generated. The
two well-known hard and fuzzy clustering algorithms are the
k-means [1] and the fuzzy C-means (FCM) [2]. Although the
k-means algorithm can efficiently cluster data, it is limited
when expressing uncertainty of cluster assignment. Inversely,
FCM is able to express uncertainties on the class memberships.
Such possibility is relevant in many applications such as
digital security [3], image segmentation [4], economy [5],
agriculture [6], etc.

Entropy-based fuzzy clustering methods are extensions of
the fuzzy clustering in which a weighted entropy is incorpo-
rated into the objective function. Depending on the application
the entropy can have different roles and meanings. In [7] the
entropy is seen as a regularizing function to the objective
function of FCM. In [8] the authors used the entropy as a
prior in Bayesian context for image restoration and proposed
a new clustering method based on the fuzzy framework. In [9]
an entropy-based fuzzy clustering method that automatically
identifies the number and initial locations of cluster centers is

proposed. In [10] the entropy of the membership functions is
incorporated into the objective function to allow gradual tran-
sition from a maximum uncertainty to a minimum uncertainty
during the clustering process. When applied for clustering
validation, the entropy corresponds to an internal validity
index [11]. In this case the entropy measures the fuzziness
of partitions produced by clusters. More generally the entropy
H of a probability p is defined as H(p) = −p log(p). The
entropy H , also called the Shannon’s entropy [12], has the
following properties: it has a low value (respectively a high
value) when the probability p is close to 0 (respectively when
p is uniformly distributed).

To overcome the limitation of many clustering algorithms
to numeric-only data, Huang initially proposed an adaptation
of the k-means algorithm for categorical data [13]. In this
method, named k-modes, a simple matching of attributes
values is used as dissimilarity measure and the clusters pro-
totypes are represented by the most frequent values (modes)
of each attribute. Later, Huang proposed a generalization of
the k-modes algorithm called fuzzy k-modes (FKM) [14].
In this method, data objects have a membership degree for
each cluster. Various extensions of the FKM have been later
proposed [15], [16], [17], [18], [19], [20], [21]. One limitation
of FKM method is the misrepresentation of clusters when the
frequencies are similar. This limit is related to the dependency
of cluster prototypes on the attributes value frequencies. To
address this problem the FKM algorithm has been extended to
consider fuzzy centroids [21]. In the later method, rather than
representing cluster prototypes by the most frequent values
for each attribute, all categorical values of each attribute is
associated to prototypes with a weight that is updated at each
iteration.

However, it can be noticed that the updating formulas of
cluster prototypes in [21] do no guarantee the convergence of
the method. Therefore it can lead to non optimal solutions.
In this paper we proposed new updating formulas of cluster
prototypes presented in [21] and extend the method to entropy-
based fuzzy clustering to have fuzzy representation of cluster
prototypes.

The remaining paper is organized as follows: Section II in-
troduces the fuzzy k-modes and the fuzzy centroids clustering
algorithms. Section III describes the new updating formulas
of cluster prototypes for the fuzzy centroids clustering and
Section IV details the new entropy-based clustering algorithm.
In the next section, Section V, the methodology of the experi-



ences and the results are presented. It is finally followed by a
conclusion and some perspective of the work in Section VI.

II. CLUSTERING PRELIMINARIES
In this section we present the fuzzy k-modes and fuzzy

centroids clustering methods.
A. Fuzzy k-modes
The fuzzy k-modes (FKM) [13] clustering algorithm is an
extended version of the k-modes algorithm to cluster cate-
gorical data based on the fuzzy clustering framework. Let
X = {x1, . . . ,xn} be a collection of n categorical objects
described by categorical attributes A1, A2, . . . , Ap. For the
attribute Al such that 1 ≤ l ≤ p, there exists in its domain nl
possible categorical values: DOM(Al) = {a(1)l , . . . , a

(nl)
l }.

Hence xi = [xi1, . . . , xil, . . . , xip] is a vector of p observed
features for the ith object and xil denotes the value of the
lth feature for the object xi. Let k be the number of clusters
and vj be the cluster center such that vj = [vj1, . . . , vjp] for
1 ≤ j ≤ k. The FKM objective function is given by:

JFKM (U,V) =
n∑
i=1

k∑
j=1

umijd(xi,vj) (1)

subject to

0 ≤ uij ≤ 1, ∀1 ≤ i ≤ n, 1 ≤ j ≤ k, (2)
k∑
j=1

uij = 1, ∀1 ≤ i ≤ n, (3)

and

0 <

n∑
i=1

uij < n, 1 ≤ j ≤ k, (4)

where U = [uij ] is the fuzzy partition matrix, m a coefficient
controlling the fuzziness of the partition and d(xi,vj) is the
dissimilarity measure given by

d(xi,vj) =

p∑
l=1

δ(xil, vjl), (5)

where

δ(xil, vjl) =

{
0 if xil = vjl,

1 xil 6= vjl.

The optimization problem can be solved by a partial op-
timization scheme which consists in fixing the variable U
and solving the reduced problem given V and inversely. The
process is iterated until convergence. The updating formulas
of U and V are given by:

uij =


1 if xi = vj ,

0 if xi = vh, h 6= j,

1

/
k∑
h=1

[ d(xi,vj)
d(xi,vh)

] 1
m−1

if xi 6= vh, 1 ≤ h ≤ k,

(6)
and vjl = a

(r)
l ∈ DOM(Al) where∑

i,xij=a
(r)
l

umij ≥
∑

i,xij=a
(t)
l

umij , ∀1 ≤ t ≤ nl, t 6= r. (7)

As it can be observable, values of cluster prototypes cor-
respond to the most frequent ones. Such crisp decision on
the centroids can lead to the distortion of the cluster rep-
resentation. Let us define for instance an attribute al with
DOM(Al) = {a(1)l , a

(2)
l }, and let us consider that the fre-

quencies of this domain values are respectively 20 and 19.
In this case the prototype corresponding to Al is a(1)l despite
uncertainties due to the closed frequencies of a(1)l and a

(2)
l

can better represent the centroid. To overcome this problem
a generalization of the FKM using fuzzy centroids has been
proposed in [21].
B. Fuzzy centroids clustering
The fuzzy centroids (FC) clustering [21] considers fuzzy
centroid with fuzzy categorical values, the objective function
is similar to the FKM’s. The difference lies in the prototypes
definition.

Let vj = (vj1, . . . , vjl, . . . , vjp) be a the prototype of
cluster j. In FKM, vjl represents the mode of attribute l
whereas it is defined in FC as follows:

vjl = [w
(1)
jl a

(1)
l ∧ · · · ∧ w

(nl)
jl a

(nl)
l ] (8)

subject to

0 ≤ w(t)
jl ≤ 1, 1 ≤ t ≤ nl (9)

nl∑
t=1

w
(t)
jl = 1, 1 ≤ l ≤ p. (10)

and the dissimilarity measure by

d(xi,vj) =

p∑
l=1

nl∑
t=1

δ(xil, a
(t)
l ), (11)

where

δ(xil, a
(t)
l ) =

{
0 if xil = a

(t)
l ,

w
(t)
jl if xil 6= a

(t)
l .

In (8), w(t)
jl corresponds to the weight associated to cluster

j, attribute l, and the tth categorical value. With the later
definition the prototypes do no longer depend on the frequency
of the attributes values but consider the combination of all
values.

Similarly to the FKM, the optimization problem can be
solved by a partial optimization. Hence, when V is fixed the
updating formulas of uij is given by equation (6). Next, when
U is fixed the updating formulas of w(t)

jl given in [21] are

w
(t)
jl =

n∑
i=1

γ(xil), (12)

where

γ(xil) =

{
umij if xil = a

(t)
l ,

0 if xil 6= a
(t)
l .



III. NEW FUZZY CENTROIDS UPDATING FORMULAS
We carried out experiences on different data sets and pa-
rameters setting of the original fuzzy centroids algorithm
and observed in some experiences the cost function is not
monotonically decreasing. In this section we rigorously derive
the objective function of the fuzzy centroids method and
showed that the updating formulas (12) do not guaranty the
convergence of the method.

Theorem 1. Let S(t)
il defined by

S
(t)
il =

∑
i,xij=a

(t)
l

umij .

For U fixed the objective function (1) is minimized iff

w
(r)
jl =



1 if S
(r)
il > S

(t)
il ,∀t ∈ {1, . . . , nl}, t 6= r,

0 if S
(r)
il < S

(t)
il ,∃t ∈ {1, . . . , nl}, t 6= r

1−
q−1∑
τ=1

wτjl if S
(r)
il = S

(τ1)
il = . . . = S

(τq−1)
il > S

(t)
il ,

∀τ1, . . . , τq−1, t ∈ {1, . . . , nl} s.t.
τ1 6= . . . 6= τq−1 6= t.

(13)

Proof: The objective function (1) with distance (11) can
be rewritten as

J(U, V ) =

n∑
i=1

k∑
j=1

umij

p∑
l=1

∑
t,a

(t)
l 6=xil

w
(t)
jl .

From (10) we have∑
t,a

(t)
l 6=xil

w
(t)
jl = 1−

∑
t,a

(t)
l =xil

w
(t)
jl . (14)

Since the sums on objects, clusters and dimensions are inde-
pendent and using (14) we can rewrite the objective function
as

J(U,V) =

k∑
j=1

p∑
l=1

n∑
i=1

[
umij − umij

∑
t,a

(t)
l =xil

w
(t)
jl

]
.

Minimizing J is equivalent to minimizing J1 ∀l ∈ [1, p] where

J1(U.j ,V.j) =

n∑
i=1

umij −
n∑
i=1

umij
∑

a
(t)
l =xil

w
(t)
jl .

Since U is fixed, minimizing J1 is equivalent to maximizing

J2(V.j) =

n∑
i=1

umij
∑

t,a
(t)
l =xil

w
(t)
jl ,

under the constraints (9) and (10). The weights wjl are
independent hence the maximization of J2 can be rewritten
as the maximization of J3 ∀j ∈ [1, k]:

J3(wjl) =

n∑
i=1

∑
t,a

(t)
l =xil

umijw
(t)
jl

Since
n∑
i=1

∑
t,a

(t)
l =xil

umijw
(t)
jl =

nl∑
t=1

∑
i,xil=a

(t)
l

umijw
(t)
jl (15)

then the optimization problem becomes{
max J2(wjl) =

∑nl

t=1

∑
i,xil=a

(t)
l

umijw
(t)
jl ,

s.t.
∑nl

t=1 w
(t)
jl = 1.

(16)

For U fixed, the term
∑
i,xil=a

(t)
l

umij is constant hence J2 is

maximized if only and if w(t)
jl satisfies the equation (13).

Equation (13) shows that the updating formulas proposed in
[21] do not guaranty the convergence of the fuzzy centroids
algorithm. In the remaining paper we denote FC* the fuzzy
centroids clustering with correct updating formulas of the
prototypes.

One can note that the new update of w(t)
jl gives most of

the time binary values. Indeed in pratice the case S
(r)
il =

S
(τ1)
il = . . . = S

(τq−1)
il is very unlikely to appear. Hence the

algorithm generates mostly hard centroids instead of fuzzy.
To overcome this problem we propose an entropy-based fuzzy
centroids method.

IV. ENTROPY-BASED FUZZY C-MEANS WITH FUZZY
CENTROIDS

A. Objective function
The entropy-based fuzzy centroids method, called Categorical
Fuzzy Entropy (CFE), is a variant of FC* that incorporates
an entropy penalization term in the objective function. Such
term allows a trade-off between hard and fuzzy centroids: the
update formulas for the weights do not lead to binary values
and the entropy term penalize uniform weights leading to total
uncertainty. We define the objective function of the CFE as
follow:

JCFE(U,V) = JFKM (U,V)+αn

k∑
j=1

p∑
l=1

nl∑
t=1

w
(t)
jl log(w

(t)
jl )

(17)
under the constraints (2), (3), (4), (9) and (10). The α param-
eter is a weighted coefficient that controls the importance of
the within cluster criteria and the entropy.
B. Optimization
Similarly to the FKM and FC, JCFE can be solved using
an alternate optimization scheme. First we consider that V is
fixed. In that case, the constraint minimization problem with
respect to U is identical to FKM and the solution is given
by equation (6). Second, we consider U fixed and obtain the
following theorem.

Theorem 2. For U fixed, the cluster prototypes V are
minimized iff

w
(t)
jl =

exp
[
− 1

nα

∑
xil 6=a(t)l

umij

]
∑nl

t=1 exp
[
− 1

nα

∑
xil 6=a(t)l

umij

] . (18)



Proof: We can rewrite JCFE as

JCFE(U,V) =

n∑
i=1

k∑
j=1

[ p∑
l=1

∑
t,a

(t)
l 6=xil

umijw
(t)
jl

+ α

p∑
l=1

nl∑
t=1

w
(t)
jl log(w

(t)
jl )
]

Since U is fixed and the sum over clusters and attributes are
independent, given j ∈ [1, k] and l ∈ [1, p], optimizing JCFE
is equivalent to optimizing

J4(wjl) =

n∑
i=1

∑
t,a

(t)
l 6=xil

umijw
(t)
jl + αn

nl∑
t=1

w
(t)
jl log(w

(t)
jl )

Using (15), minimizing the new objective function is equiva-
lent to minimizing

J5(wjl) =

nl∑
t=1

∑
i,xil 6=a(t)l

umijw
(t)
jl + αn

nl∑
t=1

w
(t)
jl log(w

(t)
jl ),

s.t.

nl∑
t=1

w
(t)
jl = 1.

Let L = J5(wjl)+λjl(
∑nl

t=1 w
(t)
jl −1) be the Lagrangian asso-

ciated to the optimization problem where λjl is a Lagrangian
multiplier. By differentiating the Lagrangian with respect to
w

(s)
jl and λjl we obtain:

∂L
∂w

(s)
jl

=

[ ∑
i,xil 6=a(s)l

umij

]
+ αn(1 + log(w

(s)
jl )) + λjl,(19)

∂L
∂λjl

=

nl∑
t=1

w
(t)
jl − 1. (20)

Setting equation (19) to 0 gives

w
(s)
jl = exp

[
−
(
1 +

λjl
nα

+
1

nα

∑
i,xil 6=a(s)l

umij

)]
. (21)

Setting equation (20) to 0 and replacing w(s)
jl by equation (21)

gives

exp
[
−
(
1 +

λjl
nα

)]
=

1
nl∑
t=1

exp
[
− 1

nα

∑
i,xil 6=a(t)l

umij

] . (22)

reporting exp
[
−
(
1 +

λjl

nα

)]
into the equation (21) gives

w
(t)
jl =

exp
[
− 1

nα

∑
i,xil 6=a(t)l

umij

]
∑nl

t=1 exp
[
− 1

nα

∑
i,xil 6=a(t)l

umij

] . (23)

Hence JCFE is minimized iff w(t)
jl satisfies equation (23).

The algorithm of our proposed method is summarized in
Algorithm 1. Given the number of clusters c, a chosen value
of m and α, the first step consists in initializing the centroids

such that equations (9) and (10) are satisfied. Then the cluster
membership degrees uij and the prototypes are updated using
respectively equations (6) and (23). The preceding step is
repeated until there exists almost no change from an iteration
to another, i.e when ‖Vt−1− Vt‖ reaches a variable ε set to a
small value.

Algorithm 1 CFE algorithm
Require: X = {x1, . . . , xn} the categorical data, 1 < c < n

the number of clusters, α > 0 the fuzzy entropy weighting
coefficient, m > 1 weighting exponent, and ε a stop criteria.

Begin
Randomly initialize V0 that respects (9) and (10).
t← 0
repeat
t← t+ 1
Update Ut using (6)
Update centroids Vt using (18)

until ‖Vt−1 − Vt‖ < ε
End

V. EXPERIMENTAL RESULTS

A. Methodology
In order to validate the proposed method we used ten cat-
egorical and real-word data sets of different size available
on the UCI Machine Learning repository [22]: Zoo, Soybean
, Congressional voting records, Breast Cancer, Lung, Cars,
Mushrooms, Credits, Dermatology, and Connect-4. For each
data set we compare the performance of the proposed method
against the FKM and FC*. Characteristics of the data sets are
detailed in Table I.

TABLE I: Categorical data sets

# Objects # Attributes # Classes
Lung 32 56 3
Soybean 40 55 4
Zoo 101 41 7
Breast Cancer 286 9 2
Dermatology 366 34 5
Votes 434 16 2
Credits 689 15 2
Cars 1728 6 4
Mushrooms 8124 22 7
Connect-4 67576 42 3

We carried out 100 trials with different centroids initial-
ization and set the parameter α to 0.01 since it gives efficient
performances on the ten data sets. As a matter of fact, through
experiments we noticed that larger values of the fuzzy entropy
coefficient α leads to uniform weights.

For each trial we executed several times the algorithms
using the fuzziness coefficient m between 1.1 and 2. In
order to obtain fair comparisons, methods are using the same
centroids initializations.

Since the real classes are known for the data sets, we used
the Rand Index (RI) [23] to evaluate the performance of the
methods. Considering this criteria, the method giving the best



partition corresponds to the highest RI. Results are detailed
next section.
B. Cost function comparison on fuzzy centroids clusterings
In the first part of the experiences, the objective function values
for FC and FC* are compared. Figure 1 presents the cost over
100 iterations with different initialization on the Zoo data set
for the FC and FC* methods.

Fig. 1: Cost of FC and FC* over 100 iterations on zoo
data set

As it can be seen, for all the iterations the costs for the
FC* method are below the FC ones. Similarly, the number
of iterations necessary to converge is lower for the FC*
method. These observations can be explained by the fact the
correct updating formulas of w(t)

jl help the objective function
to converge faster and better.

Note that the behavior of non monotonically decrease of
the objective function for FC is not visible through figure 1.
However it has been numerically observed with some initial-
izations.
C. Accuracy comparison
We compared the FKM and the original fuzzy centroids algo-
rithm with the correct prototypes updating formulas denoted
by FC*, and our entropy-based method CFE.

First, Figure 2 presents the average rand index with error
bars of FC* and CFE for various values of m for the soybean
data set.

As it can be noticed, for the Soybean data set the proposed
method performs better and has lower variance. These results
can be interpreted as follows: the fuzzy centroids obtained
using the entropy help to better represent clusters by consid-
ering several attributes values. Hence it allows to capture more
information about the data.

Fig. 2: Average RI and standard deviation varying with
m for Soybean data set

We observed that depending on the data sets, best results
for CFE are obtained with various m. Therefore this parameter
has to be carefully set.

In order to statistically evaluate differences between the
methods, a Friedman rank test [24] at significance level 0.05
was carried out on the average RI over the 100 trials. For each
coefficient m, we computed the resulting critical difference
(CD) diagram of Nemenyi post-hoc tests [24]. Due to space
consideration only the CD of m = 1.2 is shown in Figure 3.
We observed similar results for other values of m. Materials
for computing the CD are from [25].

Fig. 3: Critical Diagram difference for m=1.2 where
bold lines indicate groups of methods which are not
significantly different.

From Figure 3, we can note that CFE is ranked 1 in the
critical diagram difference. The CD shows that over the 100
trials, the CFE performs better than FKM and FC*. While
the performance of CFE is significantly different from FC*,
the difference is not significant between CFE and FKM and
between FC* and FKM.
D. Discussions
We showed using different data sets that the proposed method
can efficiently handle categorical data. However, our new
method is not addressing or proposing solutions to two classic
issues in the literature: defining the values of parameters m
and α. The choice of the m value is a well known issue in
fuzzy clustering [26] and there is little theoretical guidance
in the literature. In general, the value of m is determined



through experiences. Similarly to m, there is no general
approach to determine the optimal value of α. We observed
in the experiences that the α parameter behave as m when
it is set with a high value. Indeed, it is known that if the
value of m increases, the membership degrees uij become
uniformly distributed: uij = 1/k, ∀1 ≤ j ≤ k. In our
case, when the value of α increases, the attributes values
weights w

(t)
jl becomes uniformly distributed: w(t)

jl = 1/nl,
∀1 ≤ t ≤ nl. Therefore, all the clusters prototypes become
coincident, which harms the performance of the method.

VI. CONCLUSION
The k-modes algorithm is an adaptation of the k-means algo-
rithm that handles categorical data. It has then been extended
to the fuzzy framework by [14], who created a fuzzy centroids
clustering algorithm called FC. In this paper, we first show
that the updating formulas for cluster prototypes of FC do not
guarantee the convergence of the method. Then, we propose a
new clustering algorithm for categorical data that incorporates
an entropy penalization term into the objective function. The
goal of our method, called Categorical Fuzzy Entropy (CFE),
is to better define fuzzy cluster prototypes. The interest of
CFE is validated using ten real-world and categorical data
sets. It has been compared with the fuzzy k-modes and the
original fuzzy centroids clustering with the correct updating
formulas. The results of the experiments concerning the com-
parison between the original fuzzy centroids algorithm with
the correct prototypes updating formulas, denoted by FC*,
and CFE illustrates that the later outperforms FC*. Statistical
comparisons of FKM, FC* and CFE, show that on average for
all values of m between 1.1 and 2, CFE performs better on all
the considered data sets of the experiments. Our new method
can then be used to efficiently handle categorical data.

In the future, we intend to better study the α parameter
in order to propose some guidelines for its setting. Next, we
plan to extend the proposed method to handle both numeric
and categorical data.
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