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Abstract—Evidential clustering methods assign objects to clus-
ters with a degree of belief, allowing for better representation of
cluster overlap and outliers. Based on the theoretical framework
of belief functions, they generate credal partitions which extend
crisp, fuzzy and possibilistic partitions. Despite their ability
to provide rich information about the partition, no evidential
clustering algorithm for categorical data has yet been proposed.
This paper presents a categorical version of ECM, an evidential
variant of k-means. The proposed algorithm, referred to as cat-
ECM, considers a new dissimilarity measure and introduces an
alternating minimization scheme in order to obtain a credal
partition. Experimental results with real and synthetic data sets
show the potential and the efficiency of cat-ECM for clustering
categorical data.

Index Terms—clustering, categorical data, credal partition,
evidential c-means, belief functions

I. INTRODUCTION

Clustering is a fundamental data mining technique that aims,
without any other prior information, to group objects on the
basis of a similarity notion. In such unsupervised contexts,
objects are usually described by numerical attributes and the
similarity notion corresponds to a distance measured between
pairs of objects or between objects and clusters. Numerous
clustering approaches have been proposed in the literature
in order to meet the specific needs of various problems [1].
Among efficient clustering techniques, the family of partition-
based methods, including the popular k-means algorithm,
have been widely used because they are relatively simple to
compute, easy to interpret, and they scale efficiently with large
data sets. Accordingly, partition-based clustering methods have
seen widespread use in disparate fields including bioinfor-
matics with gene expression [2], robotics with data sensors
analysis [3], business [4], climatology [5], and others.

The k-means algorithm is a partition-based clustering
method which represents clusters by a centroid surrounded
by a crisp partition, with objects belonging unambiguously
to a single cluster and not to any other. In many real-world
applications however, inter-object differences can be ambigu-
ous or uncertain, and the use of crisp partitions can lead to
poor overall classification accuracy under such conditions. To
address this problem and to capture this degree of ambiguity,
soft clustering variants have been proposed that allow the ex-
pression of uncertainty or/and imprecision in the partition. The
fuzzy c-means (FCM) algorithm [6], based on the probabilistic
theory, provides a fuzzy partition where each object has a
degree of membership to each cluster. Since FCM has poor

robustness against noise and outliers, possibilistic extensions
of k-means [7], [8] as well as a variant of FCM called noise-
clutering (NC) [9] has been introduced. More recently, an
evidential clustering version of NC, referred to as evidential
c-means (ECM), has been proposed [10]. By using the belief
functions theory [11] and by generating a credal partition,
ECM enhances hard, fuzzy and possibilistic partitions [12],
while expressing with more precision the magnitude of doubt
concerning the class membership of the various objects.

Initially, k-means and its variants were created for the
clustering of numerical data. These types of data allow the use
of geometric distances (e.g. Euclidean) to define similarities
between objects. However, many real-world data sets include
qualitative variables which do not have geometrical properties
and which cannot be analyzed with clustering algorithms
that rely on geometrical distances. To address this limitation,
several new extensions of k-means have been proposed [13]–
[17]. In [13], the standard k-means algorithm is adjusted
to use a hard centroid representation and to handle a dis-
similarity measure fitting categorical objects. The algorithm,
which generates a crisp partition, is generalized by [14] to
produce a fuzzy partition. Later, [15] proposed to improve
the categorical fuzzy clustering by defining fuzzy centroids.
More recent works include categorical k-means versions with
effective dissimilarity functions [16], [17].

Although the generation of a credal partition via an evi-
dential clustering allows the expression of a wide variety of
situations ranging from complete ignorance to full certainty,
there currently exists no evidential clustering algorithms dedi-
cated to categorical data. In the present work, a new variant of
k-means that takes as inputs qualitative variables and which
generates a credal partition is introduced. The remainder of
this paper is organized as follows: Section II recalls the nec-
essary background in clustering and in belief function theory.
Section III details the new categorical evidential clustering
algorithm, then Section IV illustrates the applicability of the
method on two well-known clustering data sets. The final
section presents the conclusions and suggests future extensions
for the work.

II. CLUSTERING PRELIMINARIES

A. Fuzzy c-means variants
Let X = {x1, . . . ,xn} be a collection of n objects where
xi = [xi1, . . . , xil, . . . , xip] is a vector of p observed features



for the ith object. Thus, xil denotes the value of the lth feature
for the object xi. The fuzzy c-means (FCM) variants aim at
grouping objects into c clusters characterized by prototypes
(or centroids). Let vk = [vk1, . . . , vkl, . . . , vkp] be the p-
dimensional prototype of the k cluster and V = {v1, . . . ,vc}
be the set of c prototypes. All FCM variants generate a fuzzy
partition U = [uik], where uik corresponds to the degree
of membership between the object i and the cluster k, by
minimizing the following objective function:

JFCM (U,V) =

n∑
i=1

c∑
k=1

uβikd
2
ik, (1)

such that
∑c
k=1 uik = 1 and uik ≥ 0 for all i = {1, . . . n}

and k = {1, . . . c}.
The β coefficient is a fixed parameter that controls the

fuzziness of the partition and dik is a dissimilarity measure
computed between object xi and centroid vk. Historically,
FCM is dedicated to group objects whose features are given by
numerical values [6]. Since the minimization of the objective
function is a NP-hard problem, a heuristic given a local
minimum is employed. It consists of performing an iterative
optimization of the fuzzy partition U and the centroids V.

Later, the FCM algorithm was adapted in order to
take into account qualitative data [14], [15]. Let A =
(A1, . . . ,Al, . . . ,Ap) be a set of p categorical attributes and
Dom(Al) = (a

(1)
l . . . a

(nl)
l ) be the domain of possible values

for the attribute Al. Such attributes are not ordered and contain
a finite number of values, e.g nl for Al. In [14], centroids are
hard, i.e. they are defined as objects with categorical values.
The algorithm, referred to as fuzzy k-modes (FKM), introduces
the following dissimilarity measure:

d2
ik =

p∑
l=1

φ(xil, vkl), (2)

such that φ(xil, vkl) = 1 if xil 6= vkl and equals 0 otherwise.
Although FKM has relatively good performances, the mix-

ing of a fuzzy partition with hard centroids is arguably
questionable: FKM permits doubt on cluster assignments, but
forces prototypes to have a single attribute value for each
attribute. Consequently, other attribute values with a high
frequency (but not the largest one) are ignored outright. To
resolve this issue, [15] introduced the notion of categorical
fuzzy centroids. For each feature l of each cluster k, they de-
fined weights wkl such that vkl = [w

(1)
kl a

(1)
l ∧· · ·∧w

(nl)
kl a

(nl)
l ]

and w(t)
kl ≥ 0 is the weight of the tth value in the domain Al

for the cluster k. The weights wkl should respect the following
constraint:

nl∑
t=1

w
(t)
kl = 1, ∀k ∈ {1 . . . c}, l ∈ {1 . . . p}. (3)

Then, a distance between a fuzzy centroid vk and an object
xi is calculated by summing the weight of attribute values that
are different from the attribute values of xi:

d2
ik =

p∑
l=1

φ′(xil, vkl), (4)

such that
φ′(xil, vkl) =

∑
t∈Dil

w
(t)
kl , (5)

with Dil = Dom(Al) \ a(r)
l and a(r)

l = xil.
B. Belief functions
Belief functions theory corresponds to the Dempster-Shafer
theory of evidence [11], [18], which defines a mathematical
framework for modeling partial and unreliable information.
Let us consider a variable ω taking values in a finite set
Ω = {ω1, . . . , ωc} called the frame of discernment. The
mass function m : 2Ω → [0, 1] represents the partial
knowledge regarding the actual value taken by ω. It satisfies∑
A⊆Ωm(A) = 1.
Any subset A such that m(A) > 0 is called a focal set of

m. Complete ignorance is represented by m(Ω) = 1 and full
certainty is obtained when a unique singleton of Ω possesses
the whole mass of belief.

Several operations and measures have been proposed in
order to simplify the interpretation of a mass function and
to make a decision regarding the value of ω. For example, the
pignistic transformation allows one to convert a mass function
to a probability distribution [18] and the normalized non-
specificity measure N? evaluates the degree of imprecision
of a mass function m, allowing one to quantify the degree of
information included in m [10], [19].
C. Evidential c-means
The evidential c-means (ECM) [10] is a generalization of the
FCM algorithm dedicated for numerical data. It generates a
credal partition M = (mi) in which a mass function mi is
defined for each object i. The use of evidential theory allows
the representation of uncertainties and imprecision regarding
the class membership of the objects. Since any subsets Aj in
the set Ω = {ω1, . . . , ωc} of possible classes can be a focal set,
the ECM algorithm represents not only prototypes for clusters,
but also prototypes for subsets with a cardinality higher than
1. Then, for each subset Aj ⊆ Ω, Aj 6= ∅, a centroid vj ∈ Rp
is calculated as the barycenter of the centers associated to each
class of Aj .

The ECM algorithm searches for a credal partition M and
the set of prototypes V that minimize intra-cluster variance:

JECM (M,V) =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijd

2
ij +

n∑
i=1

ρ2mβ
i∅,

(6)
such that, for all i = {1, . . . n} and for all Aj ⊆ Ω,∑

j/Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, mij ≥ 0. (7)

The mass mi∅ denotes the mass of xi allocated to the empty
set, ρ > 0 is a fixed parameter allowing the user to control
the importance given to the empty set, and dij represents
the Euclidean distance between xi and vj . The weighting
coefficient |Aj |α, which corresponds to the cardinality of Aj
as a power of α, allows the user to penalize the allocation of



belief to subsets with high cardinality. As in FCM, β > 1
corresponds to an exponent that controls the fuzziness of
the partition: β close to 1 gives a credal partition similar
to a crisp partition, whereas β with a high value provides a
partition where coefficients are equally distributed throughout
the clusters. Usually, α is set to 1 and β to 2.

III. CATEGORICAL ECM

In this section, we introduce a new evidential algorithm
referred to as cat-ECM. The method is a variant of ECM that
takes in account qualitative attributes.
A. Notations and Objective function
Similarly to FCM with fuzzy centroids, let us assume that the
collection of objects to be clustered is defined by a set of
categorical features A. For each subset Aj ⊆ Ω, Aj 6= ∅, we
introduce a fuzzy prototype vj = (vj1, . . . , vjl, . . . , vjp) such
that vjl = [w

(1)
jl a

(1)
l ∧ · · · ∧ w

(nl)
jl a

(nl)
l ].

The weight w(t)
jl is a positive value that corresponds to

the coefficient given to the tth value in the domain Al for
the subset Aj . We propose to associate to this weight the
barycenter of the weight of the classes composing Aj :

w
(t)
jl =

1

|Aj |
∑
ωk∈Aj

w
(t)
kl . (8)

By constraining for each cluster the sum of the weight to
1 (cf. Eq. (3)), we obtain, for subsets Aj such that |Aj | > 1,
the following rule:

nl∑
t=1

w
(t)
jl = 1 ∀l ∈ {1 . . . p},∀Aj ⊆ Ω, Aj 6= ∅. (9)

Then, we define the squared dissimilarity measure d2
ij

between an object xi and a subset Aj as

d2
ij =

1

p

p∑
l=1

φ′′(xij , vjl), (10)

where

φ′′(xij , vjl) =
∑
t∈Dil

w
(t)
jl =

∑
t∈Dil

1

|Aj |
∑
ωk∈Aj

w
(t)
kl . (11)

The function d2
ij provides a normalized dissimilarity value

by considering only attribute values different from the object
value.

The goal of cat-ECM is to create a credal partition M with
the best set of weights W that minimize (6) such that (3) and
(7) are respected. Note that weights for subsets Aj such that
|Aj | > 1 are defined by weights associated to singletons (cf.
Eq. (8)). Thus, the set W only includes singletons weights.
B. Optimization
Minimizing JECM (M,W) can be solved by iteratively opti-
mizing M and W until convergence.

First, the weights (and consequently the centroids) are fixed
and the objective function is minimized with the respect to
the credal partition M and subject to conditions (7). In this
framework, d2

ij is considered as a fixed coefficient. Hence, the

constrained problem is identical to ECM and can be solved
by introducing Lagrange multipliers [10]. The update formula
of mij is, ∀i = 1, . . . n, ∀j/Aj ⊆ Ω and Aj 6= ∅:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak 6=∅ |Ak|
−α/(β−1)d

−2/(β−1)
ik + δ−2/(β−1)

. (12)

For Aj = ∅, the mass is defined as:

mi∅ = 1−
∑
Ak 6=∅

mij ∀i = 1, . . . n. (13)

Second, the credal partition is fixed and JECM is minimized
with respect to the set of weights W and subject to constraint
(3). Since each set of weights wkl = {w(1)

kl , . . . , w
(nl)
kl } are

independent ∀k ∈ {1 . . . c} and ∀l ∈ {1 . . . p}, minimizing
the objective function is equivalent to minimizing each wkl
separately. The problem is a linear optimization problem that
is solved by giving the maximal weight to the categorical value
that is the most frequent in the cluster. The update formula
obtained for the weight associated to cluster k, attribute l and
the tth possible value of the attribute is

w
(t)
kl =



1 if f
(t)
ik > f

(r)
ik ,∀r ∈ {1 . . . nl}, r 6= t,

0 if f
(t)
ik < f

(r)
ik , s.t. r ∈ {1 . . . nl}, r 6= t,

1
q if f

(t)
ik = f

(s1)
ik = · · · = f

(sq−1)
ik > f

(r)
ik ,

∀s1, . . . , sq−1, r ∈ {1 . . . nl},
r 6= s1 6= · · · 6= sq−1 6= t,

(14)

where
f

(t)
ik =

1

p

∑
Aj⊇ωk

∑
S(t)
l

|Aj |α−1mβ
ij , (15)

and S(t)
l defines a subset of objects in {1 . . . n} such that

xil = a
(t)
l .

Proof. Let bij define a scalar such that bij , 1
p |Aj |

α−1mβ
ij ,

∀i = 1, n ∀j/Aj ⊆ Ω, Aj 6= ∅. Replacing d2
ij in the

objective function (6) by (10), (11) and bij gives

JECM (M,W)=

n∑
i=1

∑
Aj⊆Ω,
Aj 6=∅

bij

p∑
l=1

∑
t ∈Dil

∑
ωk∈Aj

w
(t)
kl +

n∑
i=1

ρ2mβ
i∅.

Since
∑
Aj⊆Ω

∑
ωk∈Aj

bij =

c∑
k=1

∑
Aj⊆Ω,ωk∈Aj

bij , the objective

function can be written as:

JECM (M,W) =

c∑
k=1

p∑
l=1

n∑
i=1

∑
Aj⊆Ω,
ωk∈Aj

bij
∑
t ∈Dil

w
(t)
kl +

n∑
i=1

ρ2mβ
i∅.

Let w(r)
kl be the weight associated to the attribute value egal

to xil. Using (3), we deduce that
∑
t ∈Dil

w
(t)
kl = 1 − w(r)

kl .
Thus,

JECM (M,W) =

c∑
k=1

p∑
l=1

n∑
i=1

∑
Aj⊆Ω,
ωk∈Aj

bij(1− w(r)
kl ) +

n∑
i=1

ρ2mβ
i∅.



By fixing M to minimize JECM , the terms
∑n
i=1 ρ

2mβ
i∅

and
∑n
i=1

∑
Aj⊆Ω,ωk∈Aj

bij become constants. Since each
element wkl are independent, minimizing JECM (W) is equiv-
alent to maximizing (16) under the same conditions.

J ′ECM (wkl) =

n∑
i=1

∑
Aj⊆Ω,ωk∈Aj

bijw
(r)
kl (16)

Taking for all objects and all subsets a coefficient bij and the
weight associated to xil is similar to taking separately each
possible weight w(r)

kl of the attribute Al and summing the
coefficients bij associated to objects having the same value
a

(r)
l and subsets containing ωk. This leads to write J ′ECM as

follow:

J ′ECM (wkl) =

nl∑
t=1

w
(t)
kl

∑
Aj⊆Ω,ωk∈Aj

∑
i∈{1,...,n}/xil=a

(t)
l

bij

︸ ︷︷ ︸
cst

The two last sums correspond to a constant. Thus, the max-
imization of the objective function under constraint (9) is a
linear optimization problem with linear constraints. Optimal
solution is given by eq. (14).

As can be observed, the minimization of the weight usually
provides a crisp centroid for singletons. For other subsets
with higher cardinality, fuzzy centroids are expected to appear
more often, since they are defined as an average of singletons
weights.

The algorithm of our proposed method is summarized in
Algorithm 1. During initialization, singletons weights are
randomly fixed such that Eq. (3) is satisfied for all attributes
and clusters. Then, cluster centers with cardinality ≥ 2 are
computed. Convergence is reached when centroids do not
change from one iteration to another.

Algorithm 1 cat-ECM algorithm
Require: X = {x1, . . . , xn} the categorical data, 1 < c <
n the number of clusters, α ≥ 1 the weighting exponent
for cardinality, β > 1 weighting exponent, and δ > 0 the
distance to the empty set.
Randomly initialize W that respect (3) and (9)
t← 0
repeat
t← t+ 1
Update M using (12) and (13)
Update centroids Vt−1 using (14)

until Vt−1 = Vt

IV. EXPERIMENTAL RESULTS

A. Methodology
In order to validate cat-ECM, three categorical data sets were
used: Cat-diamond, a categorical toy data set inspired from
the diamond data set [10] (cf. Fig. 1), Soybean and Zoo, two

TABLE I: Characteristics of the datasets.

objects number attributes number classes number

Cat-diamond 12 2 2
Soybean 47 35 4

Zoo 101 17 7

Fig. 1: Cat-diamond data set

classical data sets available on the UCI Machine Learning
repository.Characteristics of each data set are reported in
Table I. It should be emphasized that the data sets contain
categorical attributes with no order properties on the values.
Fig. 1 shows one possible representation of the data points for
Cat-diamond; others are possible and equally valid.

Since real classes are known for these data sets, the perfor-
mance of cat-ECM was assessed using two classical measures:
(1) the adjusted rand index (ARI) [20], which computes a
similarity measure between two crisp partitions, and (2) the
Huang’s accuracy [21], which directly compares the true
classes with the crisp partition found. In order to obtain a
crisp partition from our algorithm, a pignistic transformation
is performed on the credal partition and then a maximal
probabilistic rule is used. Furthermore, the behavior of cat-
ECM was also analyzed using the normalized non-specificity
measures on the generated credal partition.

In order to avoid local minima due to a random initialization
of the centroids, an experiment consisted of running cat-ECM
10 times and selecting the solution giving the minimum value
of the objective function.
B. Behavior of cat-ECM
We first analyzed the Cat-diamond toy data set with the
following parameters: c = 2, α = −0.05, β = 1.1 and
δ = 1.05. Fig. 2 presents the masses obtained by cat-ECM
plotted against the objects.

As can be observed, objects 2, 3 and 4 are grouped in the
first cluster and objects 8, 9 and 10 form the second cluster.
This can be explained by the fact that they share the same
value for the most discriminant attribute, i.e attribute 1. Note



Fig. 2: Masses obtained with Cat-diamond data set

TABLE II: ARI, Accuracy and normalized non-specificity
obtained on Soybean data set

α ARI Accuracy N*(c)
-1 0.5 0.74 0.42

-0.05 0.82 0.94 0.05
0 0.87 0.96 0.03
1 0.87 0.96 0
2 1 1 0

that objects 2 and 8 are allocated with full certainty to cluster
ω1 and ω2 respectively. Hence, the cluster centers are located
on those two objects.

Object 2 in ω1 and object 8 in ω2 have in common with
objects 1, 5, 6, 7, 11 the value of the attribute 2. Thus, x1, x5,
x6, x7 and x11 belong to Ω, meaning that they are between
the two clusters.

Finally, objects 12 and 13, with their allocation to the empty
set, are considered as outliers. They are indeed far from all
other objects.
C. Guidelines for parameters
Before running cat-ECM, parameters δ, β and α should be set.
First, the δ value can be obtained using a rejection rate [10].

The β parameter controls the fuzziness of the credal parti-
tion. As in ECM, high values of β implies balanced masses
for the clusters. We observed throughout the experiments that
β ≥ 2 corresponds to a high value for cat-ECM. Thus, we set
β = 1.1 close to 1 for the rest of the experiments.

In order to test the α parameter, which controls the quantity
of imprecision available in the final credal partition, we exe-
cuted cat-ECM on the Soybean data set with various values of
α. For this experiment, other parameters are fixed as follows:
δ = 10, β = 1.1, c = 4 and subsets are limited to the empty
set and the ones with a cardinality ≤ 2. Results are reported
Table II.

As can be observed with the ARI and accuracy results, our
algorithm provides good performance on the Soybean data set,
with higher values of α leading to better clustering solutions.

Fig. 3: Validity index on Zoo data set

Inversely, the normalized non-specificity is higher when α is
low. For the next experiment, we decided to keep α = −0.05,
as this would allow the expression of uncertainties and would
lead to reasonable clustering solutions.

It should be emphasized that in ECM, the α parameter is
normally > 0 in order to penalize subsets with high cardinality.
In cat-ECM, since the optimization of the prototypes provides
hard values for the clusters, distances between subsets with a
high cardinality and objects are usually further than distances
between clusters and objects. Thus, to obtain allocation of
belief to subsets with high cardinalities, singletons should be
penalized by setting a negative value for α.
D. Validation of cat-ECM on Zoo data set
Usually in a concrete clustering problem, no background
knowledge is available. Thus, the following experiment with
the Zoo data set started with the assumption that the number
of classes c was unknown.

In order to choose a relevant number of clusters, a classical
method consists of measuring a validity index from partitions
generated by the clustering algorithm with various values of
c and analyzing the curve. In the framework of evidential
clustering algorithms, a validity index frequently used is the
normalized non-specificity measure. The minimum value of
the measure corresponds to the experience with the optimal
number of clusters [10].

The cat-ECM algorithm was performed with α = −0.05,
β = 1.1 and δ = 10 and c varying from 2 to 8. The resultant
normalized non-specificity values are presented Fig. 3.

As can be observed, the optimal number of clusters is
reached for c = 7, which actually corresponds to the real
number of classes. The credal partition obtained with c = 7
was transformed into hard credal partition by assigning each
object to the subset of classes with the highest mass. The result
of this is illustrated Fig. 4. A multiple components analysis
was employed to plot data points in 2D. Note that the accuracy
of the solution is 0.93.

Clusters C1 to C7 represent, respectively, reptiles, inver-
tebrates, birds, amphibians, fishes, mammals and insects.



Fig. 4: cat-ECM with 7 clusters on Zoo data set

Objects in the subset C13={reptile,bird} correspond to the
animals land tortoise, rhea and kiwi. The uncertainty between
C1 and C3 can be explained as following: the land tortoise,
which is in reality a reptile, is the only herbivorous reptile
within the zoo data set. Thus, the distance with other reptiles
is equivalent to the distance with herbivorous birds. The rhea
and the kiwi are flightless birds; consequently, their assignment
to the bird class is uncertain and reptiles are close to them.
The object assigned to C45={amphibian,fish} corresponds to
the sea-snake. It is in reality a reptile, but it can swim and its
assignment to the subset C45 is therefore not surprising.

V. CONCLUSION

This paper presents a new categorical clustering algorithm
referred to as cat-ECM. Similar to ECM, our method generates
a credal partition which brings richer information about uncer-
tainties and imprecision than a hard, a fuzzy or a possibilistic
partition. The novelty of our approach corresponds to the
introduction of weights for the centroids and the definition
of a new dissimilarity measure between categorical objects
and cluster centroids. An alternate minimization scheme is
proposed to solve the clustering problem. While the update
of the masses does not differ from ECM, the update of the
centroids provides hard weighting coefficients. Preliminary
results on three data sets show that cat-ECM is efficient for
the analysis of data sets containing outliers and overlapping
clusters. Additional validation work needs to be performed to
understand how changes to the various parameters of cat-ECM
affects the clustering solution, how these results vary with the
number of objects in a data set, and how the performance of
cat-ECM compares to closed categorical clustering methods.
Nevertheless, the ability of cat-ECM to handle categorical data
makes it highly useful for the analysis of survey data, which
are common in for e.g. health research and which often contain
categorical, discrete and continuous data types.
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