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Abstract. To certify good data partitioning, it is necessary to use an
evaluation measure. This measure must take into account the specificity
of the modeled partition. For centroid-based fuzzy partitioning, different
measures exist. However, none of them takes into account the adaptive
distance that some clustering models use. In our study, we extend the
Xie-Beni measure, using both the Mahalanobis distance and the Wasser-
stein distance. The numerical results show the relevance of our new index.
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1 Introduction

Clustering is an unsupervised learning method that does not require prior class
labels to implement observational learning. Clustering is employed to group col-
lections of physical or abstract objects into multiple classes of similar objects.
There are various clustering algorithms such as partition-based clustering, hier-
archical clustering, density-based clustering, grid-based clustering, and model-
based clustering. These clustering algorithms can also be split following the type
of partition generated: a hard partition or a soft partition. A hard partition
assigns with total certainty an object to a cluster, whereas a soft partition al-
lows to produce doubt regarding the class membership of an object. Among soft
partitions, the probabilistic partition is the most famous one.

Various clustering methods can be applied for a data analysis. Thus, it is
important to choose among the algorithms the partition that best fits the data.
For this, validity indexes have been proposed. Such indexes attempt to measure
the correspondence between a partition and the underlying structure of the data.

The validity indexes can be divided into internal and external indexes. An ex-
ternal index, such as the Normalized Mutual Information (NMI) or the Adjusted
Rand Index (ARI) [14], allows to compare two partitions. It is generally used to
measure the accuracy of a clustering partition by comparing it with the parti-
tion derived from the ground truth. Inversely, an internal index seeks to describe
the intrinsic structure of the data without any prior information. It employs the
notion of compactness within clusters and/or the notion of separability between
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clusters. The compactness quantifies how much the members of each cluster are
close to each other. The separability, on the other hand, measures the distance
between the different clusters. Cluster validity research is a difficult task and
lacks a strict theoretical background [2].

In the case of a fuzzy partition-based clustering algorithm, such as Fuzzy C-
Means (FCM) [4], there exists some specific and well-known internal indexes: the
Partition Coefficient PC, the Partition Entropy PE [5], and the Fuzzy Hyper
Volume index FHV [10] are the indexes that measure only compactness. The
Fuzzy Silhouette FS [9], the Xie-Beni XB [21], and the Partition Coefficient
And Exponential Separation PCAES [20] are measures combining compactness
and separability.

However, with the exception of Fuzzy Hyper Volume index [10], they are all
based on the Euclidean distance. If a clustering algorithm uses Mahalanobis dis-
tances, as it is the case for FCM-GK [12] and its extensions [1], these indexes will
not take this information into account and it can lead to incorrect quantification
of the compactness and separability of the partition. Plus, although the Fuzzy
Hyper Volume index [10] handles Mahalanobis distances, it only measures the
compactness of the partition. It is therefore necessary to describe a new mea-
sure adapted to the compactness and separability for clustering algorithms using
Mahalanobis distances.

This study aims to propose an extension of the Xie-Beni index to deal with
partitions obtained with Mahalanobis distances. The paper is organized as fol-
lows: Section 2 details the necessary knowledge to introduce the Xie-Beni index
in Section 3 and its extension in Section 4. Numerical experiments are presented
in Section 5 and a conclusion and perspectives are given in the last section.

2 Background

2.1 The fuzzy c-means algorithm

Let X = (x1 . . .xn) be a data set with n objects xi ∈ Rp and p be the number
of attributes describing the objects. The objective is to obtain a partition that
groups objects into c clusters 2 ≤ c < n. A fuzzy partition U = (uij) is a matrix
of membership degrees (n × c) such that uij ∈ [0, 1] is the probability that
the object xi belongs to the cluster j. The FCM clustering algorithm and its
variants are centroid-based methods, i.e. each cluster is identified by its centroid
V = {v1, . . . ,vc}, vj ∈ Rp. The notion of similarity between an object and a
group is then the calculation of the distance d2

ij between the object i and the
center of gravity j:

– Euclidean distance in the FCM model [4, 7]

d2
ij = (xi − vj)

⊤(xi − vj). (2.1)

– Mahalanobis distance in the FCM-GK model [12]

d2
ij = (xi − vj)

⊤Sj(xi − vj), (2.2)
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In FCM-GK, there exists a specific Mahalanobis distance for each cluster. These
Mahalanobis distances are characterized by symmetric positive definite matrices
S = {S1, . . . ,Sc} also referred to as variance covariance matrices. Remark that
if the variance covariance matrix Sj defined for the cluster j corresponds to the
identity, it represents a Euclidean distance.

In FCM-GK, the unknown variables (U ,V ,S) are determined by optimizing
the following problem:

min
(U ,V ,S)

J(U ,V ,S) =

n∑
i=1

c∑
j=1

um
ijd

2
ij , (2.3)

with the constraints

uij ≥ 0, ∀i, j ∈ [1, n]× [1, c] (2.4)
c∑

j=1

uij = 1, ∀i ∈ [1, n] (2.5)

n∑
i=1

uij > 0, ∀j ∈ [1, c] (2.6)

det(Sj) = ρj , ∀j ∈ [1, c] (2.7)

The volume constraint (2.7) has been added in order to avoid trivial minimization
where all Sj matrices are set to zero.

The method used to resolve this constrained problem is the alternating opti-
mization method (AO) [4, 7, 12]. The resulting minimization steps are described
in Algorithm 1. The FCM algorithm is similar except that the co-variance ma-
trices of the set S are not updated and remain identity matrices.

2.2 The Wasserstein distance

Originating from work on the optimal transport problem, this distance mod-
els the difficulty of changing one amount of earth to another, hence its other
name Earth Mover’s Distance (EMD) [15, 19]. Mathematically, it is defined
as the measure of the difference between two probability distributions. Let
g1 = N1(µ1, Σ1) and g2 = N2(µ2, Σ2) be two multivariate Gaussians distri-
bution. The 2-Wasserstein distance between the two Gaussians is:

W2(g1, g2)
2 =∥ µ1 − µ2 ∥22 +tr

(
Σ1 +Σ2 − 2

√
Σ

1/2
2 Σ1Σ

1/2
2

)
, (2.8)

where ∥ . ∥2 is the Euclidian norm, and tr(.) the trace function. In computer
science, this distance is widely used for image comparison, especially in content-
based image search [18] and pattern recognition [3].
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Algorithm 1 FCM-GK

1: Intput : X the data set, c the number of cluster
2: err = 0, k = 0,
3: U0 random initialization.
4: while err > 10−3 do
5: k ← k + 1

6: compute Vk : vk+1
j =

∑n
i=1 uk+1

ij xi∑n
i=1 uk+1

ij

,

7: compute Sk :
Σj =

n∑
i=1

uk+1
ij (xi − vk+1

j )(xi − vk+1
j )⊤

Sk+1
j = det(Σj)

1
p (Σj)

−1

8: compute Uk : uk+1
ij =

[∑c
ℓ=1

(xi−vk+1
j )⊤Sk

j (xi−vk+1
j )

(xi−vk+1
ℓ

)⊤Sk
ℓ (xi−vk+1

ℓ
)

]−1

9: err ←∥ Uk −Uk−1 ∥
10: end while
11: Output : Uk,Vk,Sk

3 A valitidy measure : the Xie-Beni index

Xie and Beni proposed a validity measure for fuzzy clustering to evaluate the
quality of Fuzzy c-Means (FCM) cluster partitions [21]. This measure takes
into account both compactness (intra-cluster gaps) and separability (distances
between cluster centers) by computing a ratio between the mean quadratic error
and the minimum of the squared distances between the centroids. It is widely
used to compare two clustering methods [11, 13, 16].

3.1 Compactness

The compactness formulation is an extension of the ”Partition Coefficient” [6]
which measures the degree of overlap between fuzzy clusters. It is a weighted
center-based distance, with the use of a Euclidean distance and the fuzzy parti-
tion as weights:

compactness =
1

n

c∑
j=1

n∑
i=1

u2
ij(xi − vj)

⊤(xi − vj). (3.1)

Remark that this formulation is very close to the FCM cost-to-minimize function
(2.3).

3.2 Separability

In the Xie-Beni index, the separability is defined as the minimum Euclidean
distance between two centroids:

separability = min
j,k∈[1,c],j ̸=k

∥ vj − vk ∥22 . (3.2)
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3.3 XB index

The Xie-Beni index (noted VXB) is the ratio between compactness and separa-
bility. A good partitioning must have high compactness and high separability,
so XB is an index to be minimized.

(↓)VXB =
compactness

separability
=

c∑
j=1

n∑
i=1

u2
ij(xi − vj)

⊤(xi − vj)

nminj,k∈[1,c],j ̸=k ∥ vj − vk ∥22
. (3.3)

4 Improvement of VXB

The Xie-Beni index is not appropriate for partitions obtained with clustering
algorithms using a specific distance for each cluster, as FCM-GK. The two fol-
lowing examples presents the limits of the Xie-Beni measure and the way to
extend the formulas to obtain XBMW, a new Xie-Beni index taking in account
Mahalanobis distances.

4.1 Improvement of the compactness measure

-4 -3 -2 -1 0 1 2 3 4
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1

2

1
2

Fig. 1: Data set with two classes. The co-variance matrices obtained by FCM-GK
are in dotted lines and in lines for FCM

Let us considerate a 2-dimensional data set with two well-separated classes
as shown in the Figure 1. The first class has a spherical structure whereas the
second class is characterized by an ellipsoidal shape. The FCM and FCM-GK
algorithms have been applied on the data set and the obtained co-variances
matrices are presented Figure 1. Note that FCM is represented by identity co-
variance matrices.

For the first cluster ω1, both methods detect the same structure. Thus, the
compactness is the same. For the second cluster ω2, the FCM-GK method better
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detects the real shape of the cluster and should have a better compactness than
the FCM algorithm. However, since the compactness measured by the Xie-Beni
index uses the Euclidean distance, the values are similar.

Therefore, we propose to modify the Euclidean distance by the Mahalanobis
distance :

compactnessm =
1

n

c∑
j=1

n∑
i=1

u2
ij(xi − vj)

⊤Sj(xi − vj). (4.1)

When Sj = I for all j ∈ [1, c] then the new compactness measure is similar to
the compactness measure of the Xie-Beni index.

4.2 Improvement of the separability measure

In the VXB index, separability is the minimum Euclidean distance between two
centroids. Such distance does not take into account the possible difference of
importance between attributes that can exists with ellipsoidal shapes. Let us
consider an example of three clusters where the second and third cluster have
the same centroids but different variance co-variance matrices (cf. Figure 2). The
Euclidean distance d(ω1, ω2) between the cluster (ω1 : v1,S1) and the cluster
(ω2 : v2,S2) is the same as the Euclidean distance d(ω1, ω3) between the cluster
(ω1 : v1,S1) and the cluster (ω3 : v2,S3). It can be noticed in this example that

-5 0 5

-3

-2

-1

0

1

2

3

Fig. 2: Figure of two clusters with different shapes

cluster 3 gives much more importance to the attributes carried by the ordinate
axis, unlike the two other clusters. We propose to use the Wasserstein distance
to measure the difference between two clusters, considering that a cluster can
be approximated as a distribution characterized by the mean being the centroid
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(µ = v) and the variance-covariance matrix being the inverse of the distance
matrix (Σ = S−1). The distance between the two clusters is then:

W2(ωj , ωk)
2 =∥ vj − vk ∥22 +tr

(
S−1

j + S−1
k − 2

√
S

−1/2
k S−1

j S
−1/2
k

)
. (4.2)

The separability with the Wasserstein distance is

separabilityw = min
j,k∈[1,c],j ̸=k

W2(ωj , ωk)
2. (4.3)

When the distance matrices are all equal as in FCM where Sj = I, ∀j ∈ [1, c],
then the Wasserstein distance is equal to the Euclidean distance.

4.3 XBMW : a new Xie-Beni index

Our new index, referred to as VXBMW , is an extension of VXB using the Ma-
halanobis distance for the compactness and the Wasserstein distance for the
separability:

(↓)VXBMW =
compactnessm
separabilityw

=

∑c
j=1

∑n
i=1 u

2
ij(xi − vj)

⊤Sj(xi − vj)

nminj,k∈[1,c],j ̸=k W2(ωj , ωk)2
. (4.4)

5 Numerical experimentation

5.1 Methodology

In this section, we evaluate the performance of our index. The idea is to show
that there exists a better correlation between an external measure and our inter-
nal measure than between the same external measure and the Xie-Benie index.
The clustering methods used for the experiments are FCM and FCM-GK. Each
algorithm is run 10 times with different centroids initializations and only the
partition minimizing the cost function (2.3) is kept.

5.2 Datasets

We used 19 datasets, 6 toys datasets, and 9 from the UCI library 3: Algerian
forest(Af), Drybean(Db), Glass, Iris, classes I, J, and L from Letters(IJL) [8],
Seeds, WDBC, Wifi, Wine. We also used two synthetic datasets: Asymetric and
Skewed [17]. Table 1 references their characteristics, i.e. the number of classes
c, the number of objects n, and the number of attributes p. All datasets are
normalized, i.e. centered (mean) and reduced (std) for each attribute.

We also have created six toy datasets using a combination of cluster ω. Each
cluster corresponds to a specific Gaussian for which 100 points have been gener-
ated. The characteristics of each Gaussian is given in the Table 2: mean value v,
axis lengths a, b and rotation angle θ. We note −ω, the cluster whose mean is the
opposite −v. The data set T1 is composed of (ω1, ω2,−ω1) , T2 : (ω1, ω2, ω3),
T3 : (ω4, ω5), T4 : (ω4, ω5, ω6,−ω6, ω7,−ω7),T5 : (ω1, ω8, ω9, ω10, ω11), and T2 :
(ω12, ω13,−ω1). Figure 3 shows the obtained datasets.

3 https://archive.ics.uci.edu/ml/datasets.php
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(d) T4
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Fig. 3: Toys datasets
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Table 1: Characteristics of datasets.
Af Db Glass Iris IJL Seeds WDBC Wifi Wine Asymetric Skewed

c 2 7 2 3 3 3 2 4 3 5 6
n 243 13611 214 150 2263 210 569 2000 178 1000 1000
p 10 16 9 4 16 7 30 7 13 2 2

Table 2: Characteristics of Gaussians (i.e clusters)
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13

v

(
3
5

0

) (
0
0

) (−2
5

0

) (
0
0

) (
0
0

) (
−3
3

) (
3
3

) (
1.2
0

) (−1
2
−1
3

) (−9
10
−1
3

) (
0
−1
6

) (
3
5

0

) (
0
0

)
a 1

6
1
6

1
2

2 2 1 2 1
6

1
12

1
12

1
6

1
6

1
6

b 1
18

1
18

1
18

1
10

1
10

1 1
4

1
18

1
12

1
12

1
12

1
18

1
18

θ 30 30 0 0 90 0 45 -30 0 0 45 -30 0

5.3 External evaluation measure

We used the Ajusted Rand Index[14], which compares two hard partitions. Since
FCM and FCM-GK generates fuzzy partitions, these partitions are transformed
into hard partitions by assigning to each object the class with the highest mem-
bership. Let π1 and π2 be two partitions, a be the number of pairs of objects
which are in the same group in π1 and π2, b be the number of pairs of objects
which are in different groups in π1 and π2, c be the number of pairs that are in
the same group in π1 but not in π2 and d be the number of pairs that are in the
same group in π2 but not in π1. The ARI is then defined as follows:

ARI(π1, π2) =
2(ab− cd)

(a+ d)(d+ b) + (a+ c)(c+ b)

If two partitions are identical then the ARI score is one. The better partitioning
will have a higher ARI score and a lower index value.

5.4 Results

A better partitioning is a larger ARI and a smaller index. We use a simple
matching coefficient (SMC), between the difference in the ARI score for FCM
and GK, and the difference in the index. When ARI increases and the index
decreases it is a true positive (TP), but if the index increases then it is a false
negative (FN). If ARI decreases and the index decreases it is a false positive
(FP) but if the index increases it is a true negative (TN).

SMC =
TP + TN

TP + TN + FP + FN
(5.1)
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Table 3: Matching between XB, XBMW and ARI
TP TN FP FN SMC

VXB 2 4 1 10 0.35
VXBMW 11 2 3 1 0.76

As it can be observed Table 3, there exists a better matching for our new
index. Details are given in the Tables 4,5, and 6. This is especially the case for
the toy sets, which allow us to highlight our index. We observe that for case T1,
the limit of the Wasserstein distance is because if the clusters have the same
shape then it will be equal to the Euclidean distance. Our new index favors
GK (chosen 14 times out of 17) contrary to Xie Beni’s index which favors FCM
(chosen 14 times out of 6).

Let us also remark that our new index is more sensitive to a high number of
attributes, especially for the WDBC dataset.

Table 4: ARI, XB, XBMW for toys datasets

(a) T1

FCM GK

ARI 0.42 1
VXB 0.18 0.61 FN
VXBMW 0.18 0.21 FN

(b) T2

FCM GK

ARI 0.79 0.97
VXB 0.18 0.28 FN
VXBMW 0.18 0.13 TP

(c) T3

FCM GK

ARI 0.26 0.86
VXB 0.72 33.3 FN
VXBMW 0.72 0.005 TP

(d) T4

FCM GK

ARI 0.61 0.91
VXB 0.33 13.5 FN
VXBMW 0.33 0.01 TP

(e) T5

FCM GK

ARI 0.41 0.93
VXB 0.33 0.68 FN
VXBMW 0.33 0.31 TP

(f) T6

FCM GK

ARI 0.27 0.96
VXB 0.20 0.53 FN
VXBMW 0.20 0.14 TP

Table 5: ARI, XB, XBMW for Synthetic datasets

(a) Asymetric

FCM GK

ARI 0.89 0.96
VXB 0.09 0.12 FN
VXBMW 0.09 0.06 TP

(b) Skewed

FCM GK

ARI 0.65 0.99
VXB 0.24 0.66 FN
VXBMW 0.24 0.06 TP
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Table 6: ARI, XB, XBMW for UCI datasets

(a) Algerian forest

FCM GK

ARI 0.34 0.54
VXB 0.35 0.38 FN
VXBMW 0.35 0.01 TP

(b) Dry bean

FCM GK

ARI 0.68 0.70
VXB 16.55 0.64 TP
VXBMW 16.55 6.10−6 TP

(c) Glass

FCM GK

ARI 0.55 0.41
VXB 1.45 0.84 TN
VXBMW 1.45 2.10−3 FP

(d) Iris

FCM GK

ARI 0.63 0.74
VXB 0.22 0.79 FN
VXBMW 0.22 0.16 TP

(e) IJL

FCM GK

ARI 0.04 0.26
VXB 7.06 1.15 FN
VXBMW 7.06 0.10 TP

(f) Seed

FCM GK

ARI 0.77 0.72
VXB 0.21 0.22 TN
VXBMW 0.21 0.01 FP

(g) WDBC

FCM GK

ARI 0.68 0.41
VXB 0.48 2.16 TN
VXBMW 0.48 0.02 FP

(h) Wifi

FCM GK

ARI 0.82 0.41
VXB 0.34 6.104 TN
VXBMW 0.34 1.104 TN

(i) Wine

FCM GK

ARI 0.90 0.33
VXB 0.47 70.0 TN
VXBMW 0.47 4.19 TN

6 Conclusion

In this study, the interest was to take into account the adaptability of the metrics
to measure the quality of the partitioning methods. Indeed, for the internal
criteria, it is important to evaluate the compactness and separability according
to the particular distances of each cluster. This is why we have extended the
Xie-Beni measure with the Mahalanobis distance for the compactness and the
Wasserstein distance for the separability. We compared two methods, one based
on Euclidean distance (FCM) and its variant based on adaptive distances (FCM-
GK). The results are satisfactory as the index allows us to analyze a good fit
with an external measure.

This study is encouraging and offers some perspectives. First of all, it would
be interesting to compare two clustering methods that are both using Maha-
lanobis distances. We can also consider selecting another metric for separability.
Finally, we focused our study on the Xie-Beni index, but it could be interesting
to adapt other internal validation measures to the Mahalanobis distances, in
particular to find an optimal number of clusters.
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