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Abstract—Clustering methods assign objects to clusters using
only as prior information the characteristics of the objects. How-
ever, clustering algorithms performance can be improved when
background knowledge is available. Such background knowledge
can be incorporated in a clustering method as label constraints
which results in a semi-supervised clustering algorithm. We
propose to extend two possibilistic clustering algorithms to make
use of available a priori information. The goal is twofold: to
improve the accuracy of the clustering result by leading the
method towards a desired solution and to detect outliers by taking
advantage of the generated possibilistic partition. The proposed
methods are called semi-supervised repulsive possibilistic c-
means (SRPCM) and semi-supervised possibilistic fuzzy c-means
(SPFCM). They correspond to possibilistic clustering algorithms
that introduce label constraints. Experimental results show that
the proposed algorithms using label constraints improve (1) the
clustering result and (2) the outliers detection.

I. INTRODUCTION

Clustering methods are part of exploratory data analysis
techniques that aim to group unlabeled objects into clusters
thanks to a similarity notion. Different approaches have been
proposed in the literature such as hierarchical clustering and
partition based clustering [1]. On one hand, hierarchical meth-
ods generate dendrograms based on a proximity matrix. On
the other hand, partition based methods organize data into
groups or clusters using either crisp (hard) partitions or soft
partitions. Crisp methods divide data into groups by assigning
each object of the dataset to a single cluster with total certainty.
In the domain of partition based clustering, the most popular
algorithms generating crisp partitions are k-means and density
based algorithms such as DBSCAN. The k-means algorithm,
which is an optimization based method, corresponds to a
classical data analysis tool used in many topics [2], [3], [4].
On the contrary, soft clustering methods allow to express a
degree of uncertainty for the membership of each object to
each cluster. Fuzzy clustering methods, based on the fuzzy
sets theory [5], are the most commonly used soft methods. On
the contrary to crisp methods, soft clustering methods allow
to express a degree of uncertainty for the membership of each
object to each cluster. Fuzzy clustering methods, based on
the fuzzy sets theory [5], are the most commonly used soft
methods.

Fuzzy clustering algorithms have various application scenar-
ios which range from biological sciences [6], [7], document
and text processing [8], [9], to image processing [10], [11].
Amongst fuzzy clustering methods, Fuzzy C-Means (FCM) is
a well known variant of k-means which assigns for each object
a probability value to belong to each cluster. Its main drawback
is a poor performance on noisy data. To overcome this
weakness, [12] proposed a possibilistic clustering algorithm
called Possibilistic C-Means (PCM) which is based on FCM
with a relaxed membership degree constraint. However, as
discussed in [13], PCM highly depends on initial conditions
to produce good results. Indeed, based on initial conditions,
PCM often generates coincident clusters. This problem has
been addressed in [13], [14], [15]. In [14], the authors propose
to add a repulsion based penalty term to the PCM objective
function to avoid the coincident cluster problem resulting in
an algorithm named Repulsive PCM (RPCM). In [15], the
authors propose a new algorithm which is a linear combination
of FCM and PCM named PFCM.

Simultaneously, it has been shown that the performance
of hard and soft clustering algorithms can be improved by
using a limited amount of background knowledge expressed
as contraints [16], [17], [18]. These methods, called semi-
supervised clustering methods, can be divided following the
type of constraints employed: pairwise contraints [17], [19],
label constraints [16], [18], [20], or others [21], [22].

In this paper, we are interested in the semi-supervised
possibilistic clustering problem since the possibilistic frame-
work enables to handle noisy data. Indeed, as explained in
[15], a probabilistic partition forces an outlier to belong to
one or more clusters with a high membership degree. Thus,
this make impossible to mark it as an outlier. In contrast, a
possibilistic partition allows for an object to be assigned with
low membership degree to every clusters. When it happens, the
object can be interpreted as an outlier. We propose to extend
the RPCM and PFCM algorithms by incorporating a penalty
term in their initial objective functions such that label based
constraints are taken in account.

This work is organized as follows: in section II, possibilistic
clustering preliminaries are introduced. Section III presents



a semi-supervised possibilistic clustering algorithm based on
the repulsive PCM (RPCM) [14]. Section IV presents a semi-
supervised possibilistic clustering algorithm based on the
PFCM method [15]. In section V, the experimental results
are discussed. Finally, the conclusions and future work are
presented in section VI.

II. POSSIBILISTIC CLUSTERING PRELIMINARIES

Let us consider n objects represented by a set of feature
vectors X = {x1, . . . ,xn} in Rp and c centroids defined by a
matrix V = (vk) such that each centroid vk ∈ Rp corresponds
to a cluster. The PCM algorithm [12] iteratively updates the
centroids V and a possibilistic partition T = (tik) in order to
minimize the JPCM objective function:

JPCM (T,V) =

n∑
i=1

c∑
k=1

tmikd
2
ik +

c∑
k=1

γk

n∑
i=1

(1− tik)m,

such that

0 ≥ tik ≥ 1, ∀i = {1 . . . n}, k = {1 . . . c}. (1)

The first term of JPCM corresponds to the objective func-
tion of FCM, where m > 0, usually set between 1.5 and 3 [23],
is an exponent controlling the fuzziness of the partition and
dik is the Euclidean distance of the object xi to the cluster
k. The second term of JPCM was introduced in [12] to avoid
the trivial solution consisting in a possibilistic partition with
only null values. The weighting coefficients γk > 0 have a
great influence on the clustering results and should be chosen
with care. Default values can be computed by applying the
following formula [12]:

γk = K

n∑
i=1

umikd
2
ik

n∑
i=1

umik

, (2)

where U = (uik) is a fuzzy partition obtained by applying the
FCM algorithm and K, usually set to 1, is a weighting factor
enabling to reduce or increase the overall size of the clusters.

By observation, it is easy to realize that while PCM helps to
identify outliers it is also sensitive to initialization resulting in
coincident clusters [13]. Such situation seems to appear when
the objective function reaches a minimum, allowing to obtain
satisfying results only with higher local minima [14]. Thus,
variants of PCM have been proposed to solve this problem.

A. Repulsive Possibilistic c-means

In [14], the authors proposed a PCM variant which consists
in introducing a third term in the objective function of PCM
in order to penalize centroids too close from each other. This
algorithm is referred to as Repulsive Possibilistic C-means
(RPCM) due to the cluster repulsion role of the added term
and its objective function is:

JRPCM (T,V) = JPCM +

c∑
k=1

ηk
∑
l 6=k

1

‖vk − vl‖2
, (3)

subject to constraint (1). The parameters ηk ≥ 0, ∀k ∈
{1 . . . c} define specific degrees of repulsion for each cluster
to the other ones.

The authors propose to minimize the objective function as
PCM, i.e. by carrying out an iterative optimization of the
possibilistic partition T and the centroids V. Since the new
term does not depend on T, its update is identical to PCM:

tik =
1

1 +
(
d2ik
γk

) 1
m−1

,∀i ∈ {1 . . . n}, k ∈ {1 . . . c}.

The update of the centroids V composed of v1 . . .vk . . .vc
is more intricate. Indeed, in JRPCM there exists a dependency
between centroids. Thus, the optimization with the respect
to V cannot be performed by updating each centroid vk
separately. However, in order to facilitate the optimization and
to update prototypes one by one, [14] proposed to set as a
constant rkl = ((vk − vl)

T (vk − vl))
−2 ∀k, l ∈ {1 . . . c},

making the hypothesis that such values are not significantly
changing during the optimization process. The update formula
is then obtained by setting the gradient ∂JRPCM

∂vk
= 0:

vk =

n∑
i=1

tmikxi − ηk
∑
l 6=k

rklvl

n∑
i=1

tmik − ηk
∑
l 6=k

rkl

,∀k ∈ {1 . . . c}. (4)

Notice that the centroids update equation (4) does not always
allow to minimize the objective function (3). Moreover, in
[14], the authors state that if

∑n
i=1 t

m
ik < ηk

∑
l 6=k rkl, con-

cerned centroids have to be relocated at random positions.
In [24], the authors propose to use a second order approxi-
mation method such as Newton, instead of a gradient based
algorithm. Their choice is based on the fact that the gradient
with respect to the centroids is non linear.

B. Possibilistic Fuzzy c-Means

A different approach to solve the problem raising with PCM
is to combine possibility and probability membership values
[15]. The objective function is then defined as follows:

JPFCM (U,T,V) =

n∑
i=1

c∑
k=1

(aumik + btηik)d
2
ik

+

c∑
k=1

γk

n∑
i=1

(1− tik)η, (5)

where a, b and m, η are positive coefficients. The objective
function, called PFCM for Possibilistic Fuzzy c-means, is
subject to the constraints (1), (6) and (7).

c∑
k=1

uik = 1 ∀k = {1 . . . c}, (6)

uik ≥ 0 ∀i ∈ {1 . . . n}, ∀k ∈ {1 . . . c}, (7)



In [15], the authors have demonstrated that JPFCM is
minimized by iteratively updating the fuzzy partition U =
(uik), the possibilistic partition T and the centroids V using
equations (8)-(10) until convergence. Update formulas were
obtained using the Lagrange multiplier method. Remark that
the update formula of U is identical to FCM and the update
formula of T is similar to PCM.

uik =

(
c∑
l=1

(
dik
dil

) 2
m−1

)−1
. (8)

tik =

(
1 +

(
b

γk
d2ik

) 1
η−1

)−1
. (9)

vk =

n∑
i=1

(aumik + btηik)xi

n∑
i=1

(aumik + btηik)

. (10)

III. SEMI-SUPERVISED REPULSIVE PCM
In real applications, a priori information is available with

various degrees of certainty. We propose to exploit soft label
knowledge, i.e. objects labeled with a degree of membership
to a cluster. Such information is retrieved thanks to an expert
or automatically with the background knowledge.

Let fik ∈ [0, 1] be the possibility known a priori that xi
belongs to the cluster k. This value, is equal to 0 when it is sure
that the object i does not belong to the cluster k. Conversely,
fik = 1 indicates that xi has a strong possibility to belong to
the cluster k, even if it also let the possibility to have degrees
of belief for the other clusters.

A natural requirement for the Semi-supervised Repulsive
PCM algorithm (SRPCM) is to obtain a possibilistic value
tik the closest to fik. In particular cases and as in [16],
constraints are softened to avoid sudden disturbance of the
structure. Indeed, it can lead to inconsistent solutions.

Thus, we suggest to introduce a penalty term in the objective
function of Jrpcm so that the label constraints are respected.
The distance dik for a constrained object xi on cluster k is
employed to relax the constraint:

JSRPCM (T,V) = JRPCM + α

n∑
i=1

c∑
k=1

bik(tik − fik)md2ik,

(11)
subject to constraint (1) and where m > 1 is even and α ≥ 0

is a tradeoff coefficient between the inherent structure unsu-
pervisally retrieved and the consideration of the constraints.
The variable bik enables to select only constrained values in
the penalty term:

bik =

{
1 if xi and class k are constrained,
0 otherwise.

The new objective function has to be minimized. As
in RPCM, the optimization procedure follows an alternate

scheme by fixing first the centroids V and second the pos-
sibilistic partition T. We set m = 2 in order to ease the
minimization.

A. Optimization with the respect to the possibilistic partition

The first step of the algorithm consists in fixing V to find
an update formula of T that minimize Jsrpcm(T). Since each
element tik of T are independent, we compute the derivative of
the objective function (11) with the respect to tik and m = 2:

∂JSRPCM
∂tik

= 2tikd
2
ik − 2γk(1− tik) + 2αbikd

2
ik(tik − fik).

Each value tik of the possibilistic partition minimizing
JSRPCM is obtained by setting ∂JSRPCM

∂tik
= 0:

tik =
γk + αbikd

2
ikfik

γk + (αbik + 1)d2ik
.

B. Optimization with the respect to the centroids

In a second step, the possibilistic partition T is fixed and the
objective function JSRPCM is minimized with the respect to
the centroids. In order to choose a good optimization method,
a study concerning the convexity of the objective function is
first performed. The gradient is then calculated:

∂JSRPCM
∂vk

=− 2

n∑
i=1

t2ik(xi − vk)− 2ηk
∑
l 6=k

vk − vl
‖vk − vl‖4

− 2α

n∑
i=1

bik(tik − fik)2(xi − vk).

This gradient can be decomposed to obtain the value for a
single element of vk, e.g. vkj :

∂JSRPCM
∂vkj

=− 2

n∑
i=1

t2ik(xij − vkj )− 2ηk
∑
l 6=k

vkj − vlj
‖vk − vl‖4

− 2α

n∑
i=1

bik(tik − fik)2(xij − vkj ).

Then, elements composing the Hessian matrix Hk ∈ Rp×p
deduced from the second derivatives of JSRPCM with the
respect to the centroids are the following:

∂JSRPCM
∂2vkj

=2

n∑
i=1

t2ik − 2ηk
∑
l 6=k

1

d2lk
−

4(vkj − vlj )2

‖vk − vl‖6

+ 2α

n∑
i=1

bik(tik − fik)2,

∂JSRPCM
∂vkj∂vkj′

=8ηk
∑
l 6=k

(vkj − vlj )(2vkj′ − 2vlj′ )

‖vk − vl‖6
,

where vkj′ corresponds the j′th element of the centroid vk
such that j′ 6= j. Notice that a similar result, without the label
constraints, is available in [24].



Finally, the Hessian matrix Hk can be rewritten as follows:

Hk = 2

(
n∑
i=1

t2ik

)
I+ 8ηk

∑
l 6=k

(vk − vl)(vk − vl)
T

‖vk − vl‖6

− 2ηk

∑
l 6=k

1

d2lk

 I+ 2α

n∑
i=1

bik(tik − fik)2I,

where I is the identity matrix of proper dimension.
Let us remind that the sum of positive (semi)definite ma-

trices results in a positive (semi)definite matrix. Since I is
positive definite, t2ik ≥ 0 and bik(tik− fik)2 ≥ 0 then the first
and the last term of Hk are positive semidefinite. Similarly, the
matrix (vk − vl)(vk − vl)

T is positive semidefinite, 8ηk ≥ 0
and ‖vk−vl‖6 ≥ 0 so the second term of Hk is also positive
semidefinite. Finally, the third term is negative semidefinite.
Indeed, the scalar coefficient applied for I is negative or
equal to 0. Consequently, Hk is not guaranteed to be positive
semidefinite.

Thus, in order to update the centroids, a standard trust-
region method for non linear minimization is employed [25].
Although such method may just reach a local minimum, it
assures the convergence of the clustering algorithm. Indeed,
the objective function value after the centroids update is infe-
rior or equal to the value before. Conversely the optimization
methods employed in [14] and [24] might not follow a descent
direction in case of a negative Hessian.

IV. SEMI-SUPERVISED PFCM

The penalty term used to create SRPCM can also be
integrated in PFCM in order to produce a new algorithm
called SPFCM. It enables to handle soft label constraints. The
objective function to be minimized is the following:

JSPFCM (U,T,V) = JPFCM +α

n∑
i=1

c∑
k=1

bik(tik−fik)ηd2ik,

(12)
subject to (1), (6) and (7).
Fixed parameters have the same limits as PFCM, except for

η that should be positive and even. The α coefficient follows
the same rule as SRPCM, i.e. α ≥ 0.

The objective function (12) is optimized using a heuristic
method which consists in iteratively minimizing JSPFCM
with respect to U, then T, then V until convergence.

A. Update of the probabilistic partition

The optimization of JSPFCM with respect to U is achieved
by fixing T and V as constants. Since the penalty term
incorporated for SPFCM does not contain any probabilistic
partition values, the update of the membership degrees U are
identical to PFCM and corresponds to the equation (8).

B. Update of the possibilistic partition

In order to minimize JSPFCM with respect to T, the
variables U and V are fixed. The columns and rows of T
are independent, letting us the possibility to update each value

tik separately. By setting η = 2 to facilitate the optimization
process, the problem becomes quadratic. The derivative is then
calculated:

∂JSPFCM
∂tik

= 2btikd
2
ik − 2γk(1− tik) + 2αbikd

2
ik(tik − fik).

Setting the derivative to 0 enables to obtain the following
update formula:

tik =
γk + αbikd

2
ikfik

bd2ik + γk + αbikd2ik
.

Notice that when b = 1, the update of the possibilistic
partition for SPFCM is identical to SRPCM.

C. Update of the centroids

Since aumik + btηik > 0 and (tik − fik)m > 0, JSPFCM is
positive semidefinite with respect to V. As a consequence, the
minimum of the objective function corresponds to the value
of V vanishing the derivative. Notice that each centroid vk is
independent to each other and can then be managed separately:

∂JSPFCM
∂vk

= −2
n∑
i=1

(aumik + bt2ik)(xi − vk)

−2α
n∑
i=1

bik(tik − fik)2(xi − vk).

Let zik be a scalar such that zik = (aumik+bt
2
ik)+αbik(tik−

fik)
2. Setting the derivative to 0 leads to the following result:

vk =

n∑
i=1

zikxi

n∑
i=1

zik

.

V. EXPERIMENTAL RESULTS

A. Experimental protocol

We have run extensive experimental tests on three well
known datasets from the UCI repository, i.e. Ecoli, Iris and
Wine, and on a toy dataset called GaussK2. The characteristics
of each dataset are presented in Table I.

TABLE I
DATASET CHARACTERISTICS

Dataset # classes used # classes # attributes # instances
Ecoli 5 8 7 336
Iris 3 3 4 150

Wine 3 3 13 178
GaussK2 2 2 2 400

Ecoli dataset contains eight classes from which three classes
contain very few instances (2, 2, and 5 instances). We consider
the instances from these classes as outliers, leading us to take
into account five classes only.

The GaussK2 dataset is a two-dimensional space dataset
generated by two gaussians with different covariance matrices.
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Fig. 1. GaussK2 dataset. Classes are represented with crosses and circles.

The result is that the clusters have different densities, as shown
in Figure 1.

The parameters for SRPCM and SPFCM algorithms were
defined as follows: α = 1 and γk is retrieved as explained
in [12] with equation (2) and K = 1. The parameters ηk ∀k ∈
{1 . . . c} for SRPCM are identical and fixed manually for each
dataset. Similarly, for SPFCM, we set a = 1 and b is manually
chosen following each dataset. Details are presented Table II.

TABLE II
PARAMETERS EMPLOYED FOR SRPCM AND SPFCM

Dataset ηk b
Ecoli 0.8 2.2
Iris 2 3

Wine 0.2 1.6
GaussK2 0.1 0.2

In order to evaluate the proposed methods, a comparison
with SKMEANS [26] and SFCM [16] has been performed.
The SKMEANS algorithm corresponds the k-means method
taking label constraints as background knowledge while the
SFCM represents the fuzzy c-means version with label con-
straints.

Final acquired partitions are hard for SKMEANS, fuzzy for
SFCM and possibilistic for SRPCM and SPFCM. To perform
a comparison between these methods, fuzzy and possibilistic
partitions are transformed into hard partition by selecting the
cluster with the maximum of probability or possibility. Then,
since the true classes of the datasets are known, we compute
the ARI [27] to measure the performance of the clustering
algorithms.

B. Clustering results

All clustering algorithms use the same initial conditions for
centroids and constraints. The constraints correspond to totally
certain labels. Experiments consist in 100 trials with a given
percentage of constraints. Each trial corresponds to 5 execu-
tions of an algorithm with different centroid initializations.
The partition with the minimum objective function value is
then selected.

Figures 2, 3, 4 and 5 present the average ARI and its confi-
dence interval against the proportion of labeled constraints for
SKMEANS, SFCM and the proposed clustering algorithms,
i.e. SRPCM and SPFCM.
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Fig. 2. Clustering performances against the proportion of constraints, Ecoli.
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Fig. 3. Clustering performances against the proportion of constraints,
GaussK2.

The results show that the addition of constraints on SRPCM
clearly improves the partition compared to the initial partition
found without constraints, i.e. with RPCM. For GaussK2 and
Iris, the best performances are achieved by SRPCM. However,
the same clustering method have low results on Wine and
Ecoli. We can also observe that RPCM has always a low ARI.
The reason is that the algorithm is more sensitive to local
minima than the other clustering methods.

Conversely, the SPFCM algorithm gives more stable re-
sults than SRPCM. Then, it can be seen as a more secure
choice than SRPCM when no expert assessment can be
performed a posteriori. Indeed, it still obtains better results
than SKMEANS and SFCM for Iris and GaussK2.

The results on the Ecoli dataset can be surprising on the
first approach. Indeed, without constraints, PFCM outperforms
the other algorithms. The performance of this algorithm is
however inferior when constraints are taken into account. Such
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Fig. 4. Clustering performances against the proportion of constraints, Iris.
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Fig. 5. Clustering performances against the proportion of constraints, Wine.

behavior can be explained by the inherent structure of Ecoli:
over the 5 classes of the dataset, a couple of pairs of classes
are quasi-overlapped. Thus, none of the clustering algorithms
are able to find the real structure of Ecoli. Experimental results
show that PFCM has the best ARI by finding coincident
clusters. The addition of constraints in SPFCM tends to
separate the clusters, thus decreasing its ARI value.

Inversely, few number of constraints enables SKMEANS
to obtain the best accuracy for Ecoli. The reason is that
SKMEANS forces the total respect of the constraints whereas
the other algorithms, with the use of a penalty term, can let
some constraints not respected to obtain a more coherent final
structure. The SKMEANS algorithm has then the possibility
to converge faster to the desired solution.

C. Outliers detection

An interesting feature of a possibilistic clustering algorithm
is its ability to identify outliers. Consequently, an experiment
on the Ecoli dataset has been performed to show how SRPCM
and SPFCM handle outliers.

The same experimental protocol described above is used,
i.e. 100 trials for each specific set of constraints. When a
possibilistic partition is retrieved, a simple rule to detect

outliers is applied: an object xi is an outlier if tik ≤ 0.1,
∀k ∈ {1 . . . c}. The average rates of good detection as well as
their confidence interval are illustrated Figure 6. As it can be
observed, labels constraints helps to the detection of outliers.
The SRPCM algorithm detects better outliers than SPFCM.
This can be explained by the fact that the optimization of the
fuzzy partition for SPFCM has an impact on the possibilistic
partition.
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Fig. 6. Accuracy rate for outliers detection on Ecoli.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, two novel semi-supervised clustering algo-
rithms have been presented: SRPCM and SPFCM. Both of
them incorporate label constraints and handle a possibilistic
partition. The use of a possibilistic framework enables to
express various type of uncertainty. The advantage of such
framework is twofold in SRPCM and SPFCM: first, constraints
are represented in the form of possibility to belong to clus-
ters. Such representation enables an expert to include partial
information into the clustering algorithms more than any other
semi-supervised variants of k-means and FCM. Second, the
generation of a possibilistic partition by SRPCM and SPFCM
enables to obtain rich information about the dataset and makes
easy for instance the detection of outliers.

Encouraging results have emerged from experiments and
comparisons with other constraint-based methods. It leads to
consider several possible future works: first, the impact of la-
bels having a degree of uncertainty can be study and an active
learning scheme can be developed. Second, an investigation
about the parameters that are currently manually fixed can
be performed in order to acquire them automatically. Future
works includes extensions to use other distance measures such
as Mahalanobis distance as well as extending the proposed
method to consider more complex uncertainty models.
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