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Abstract

We present an improved relational clustering
method integrating prior information. This new al-
gorithm, entitled CEVCLUS, is based on two con-
cepts: evidential clustering and constraint-based
clustering. Evidential clustering uses the Dempster-
Shafer theory to assign a mass function to each
object. It provides a credal partition, which sub-
sumes the notions of crisp, fuzzy and possibilistic
partitions. Constraint-based clustering consists in
taking advantage of prior information. Such back-
ground knowledge is integrated as an additional
term in the cost function. Experiments conducted
on synthetic and real data demonstrate the inter-
est of the method, even for unbalanced datasets or
non-spherical classes.

Keywords: Semi-supervised clustering, pairwise
constraints, belief functions, evidence theory, prox-
imity data.

1. Introduction

Unsupervised learning analysis refers to a large vari-
ety of methods that aim at grouping data into clus-
ters [1]. These algorithms can be distinguished ac-
cording to the type of input data used. The two
most frequent data types are feature vectors in a
Euclidean vector space and pairwise proximity mea-
sures. The ubiquity of pairwise proximity measures
in empirical sciences such as biochemistry, linguis-
tic, psychology and the possibility of feature vectors
to be transformed into proximity data make cluster-
ing algorithms that can handle proximity data more
general than those using feature vectors.

The degree of information provided by a cluster-
ing algorithm may be expressed with a crisp, fuzzy,
possibilistic or credal partition. Given n objects to
classify in c classes, a crisp partition aims at group-
ing each object in one cluster, whereas a fuzzy parti-
tion U classifies each object i to each cluster k with
a degree of membership uik ∈ [0 1] such that

c
∑

i=1

uik = 1 ∀i ∈ {1, . . . , n}. (1)

A possibilistic partition expresses membership val-
ues as degrees of possibility. A credal partition,

which extends the concepts of crisp, fuzzy and
possibilistic partition, has been recently considered
in [2, 3, 4]. This is done by allocating, for each
object, a mass of belief, not only to single clus-
ters, but also to any subsets of the set of clus-
ters Ω = {ω1, . . . , ωc}. The value mi(A) such that
A ⊆ Ω corresponds then to the belief given to A

(and to no more specific subset) regarding the actual
cluster of the ith object. This formulation mainly
enables gaining deeper insight into the structure of
the data, and also improves the robustness of the
algorithm with respect to outliers.

In some situations, extra-information about the
data may be available or easy to collect. Making use
of these can lead algorithms towards desired solu-
tions. Such algorithms based on background knowl-
edge are known as semi-supervised clustering algo-
rithms. There exists many ways to exploit prior
information, at different levels such as the model
level [5, 6], the cluster level [7] or the instance level.
This last level mainly includes small sets of labelled
points. Recently, a weaker form of partial super-
vision has been considered. Wagstaff [8] proposed
to introduce two types of instance-level constraints.
A Must-Link constraint specifies that two objects
must be in the same class, and a Cannot-Link con-
straint expresses the fact that two objects should
not be in the same class. Such pairwise constraints
have been considered and integrated in many unsu-
pervised algorithms such as the hard or the fuzzy
c-means (FCM), and have recently become a topic
of great interest [9, 10, 11, 12, 13, 14]. They have
been incorporated in many different ways, generally
by including a penalty term in the objective func-
tion [15, 16] or by altering the distances between
objects with respect to the constraints [17, 18].

In this paper, we propose to add instance-level
constraints in EVCLUS [2], an evidential clustering
algorithm dedicated to proximity data. This new
algorithm, called CEVCLUS, combines the advan-
tages of adding background knowledge and eviden-
tial clustering. The rest of this paper is organized
as follows. First, Section 2 recalls the basic back-
ground on belief function and evidential clustering
with EVCLUS, then Section 3 presents the CEV-
CLUS algorithm. We initially formulate Must-Link
and Cannot-Link constraints in the framework of
belief functions to subsequently integrate them in



the evidential clustering scheme. Some results are
shown in Section 4. Finally Section 5 concludes and
gives some perspectives of the work.

2. Background

2.1. Belief functions theory

The Dempster-Shafer theory [19, 20], also referred
to as belief functions theory, is a mathematical
framework for uncertain and imprecise knowledge.
The main concepts are presented in this section.

Let Ω be a finite set called frame of discernment.
A mass function m : 2Ω → [0, 1] represents par-
tial knowledge about the actual value taken by a
variable y. This function satisfies

∑

A⊆Ω

m(A) = 1. (2)

The subsets A such that m(A) > 0 are called the
focal elements of m. The value m(A) represents
the degree of belief that the variable y belongs to
the subset A, knowing that it has been impossible
to assign this belief to a more specific subset of A.
Thus, complete ignorance corresponds to m(Ω) =
1. A particular case arises when all focal sets are
singletons: m is then equivalent to a probability
distribution. If m(∅) > 0 then y may not belong to
Ω. This interpretation is defined as the open-world
assumption.

Given a mass function m, it is possible to define
a plausibility function pl : 2Ω → [0, 1] and a belief
function bel : 2Ω → [0, 1] by:

pl(A) =
∑

B∩A 6=∅

m(B) ∀A ⊆ Ω, (3)

bel(A) =
∑

B⊆A,B 6=∅

m(B) ∀A ⊆ Ω. (4)

The quantity bel(A) represents the total amount of
support given to A, whereas pl(A) measures the
maximal degree of belief that could be given to A.
Those functions are variants of the same informa-
tion, and one can be retrieve from each other by:

pl(A) = 1 − m(∅) − bel(A), (5)

where A denotes the complement of A ⊆ Ω.
The conjunctive rule makes it possible to combine

two belief functions define on the same frame:

(m1©∩ m2)(A) =
∑

B∩C=A

m1(B)m2(C) ∀A ⊆ Ω.

(6)
The quantity (m1©∩ m2)(∅) is called the degree of

conflict between m1 and m2. It denotes the degree
of disagreement between the two belief functions,
and satisfies

K12 = (m1©∩ m2)(∅) =
∑

B∩C=∅

m1(B)m2(C). (7)

For decision making, the mass function is trans-
formed into a pignistic probability distribution [21]:

BetP (ω) =
∑

ω∈A

m(A)

|A|
∀ω ∈ Ω, (8)

where |A| denotes the cardinality of A ⊆ Ω. If
m(∅) > 0, a normalization step has to be per-
formed before carrying out the pignistic transfor-
mation. There exists many different methods to ex-
ecute this step, for example Yager’s normalization
consists in transferring m(∅) to m(Ω) [22].

2.2. Evidential clustering of proximity data

Let us consider O = {o1, . . . on} a collection of n ob-
jects to classify in a set Ω = {ω1, . . . ωc}. In [2], it
was proposed to use the concept of credal partition
instead of a crisp or a fuzzy one. Partial knowl-
edge regarding the class membership of an object is
represented by a mass function on the set of possi-
ble classes. A credal partition of O is denoted by
M = (m1, . . . , mn).

Let us consider an example of five objects that
need to be classified into two classes. A credal par-
tition is shown in Table 1. The classes of the three
first objects are known with certainty whereas the
class of the fourth object is completely unknown.
The fifth object, with all its mass allocated to the
empty set, corresponds to an outlier.

A m1(A) m2(A) m3(A) m4(A) m5(A)
∅ 0 0 0 0 1

{ω1} 1 1 0 0 0
{ω2} 0 0 1 0 0

Ω 0 0 0 1 0

Table 1: Example of credal partition

Let us suppose that the available data consists
of a n × n dissimilarity matrix ∆ = (δij) where
δij = δji represents the degree of dissimilarity be-
tween two objects oi and oj . To derive a credal
partition from the input dissimilarities, Denœux
and Masson [2] proposed the following compatibility
condition:

δij > δi′j′ ⇒ Kij ≥ Ki′j′ , (9)

where (oi, oj) and (oi′ , oj′ ) represent any pairs of
object in O2 and Kij denotes the degree of conflict
between mi and mj. Thus, the more dissimilar the
objects, the higher the conflict between the mass
functions. The purpose is then to find a credal par-
tition M that is the most compatible with ∆. This
problem is similar to the one addressed by multidi-
mensional scaling algorithms, which aim at finding
a configuration of points in a p-dimensional space
such that the distances between points approximate
the dissimilarities [23]. The EVCLUS [2] algorithm



minimizes the following stress function:

JEV CLUS(M, a, b) =
1

C

∑

i<j

(aKij + b − δij)2

δij

,

(10)
where a and b are two coefficients, and C is a nor-
malizing constant defined as

C =
∑

i<j

δij . (11)

In addition, the credal partition should satisfy the
constraints mi(Ak) ≥ 0 for all object oi and all sub-
set Ak, as well as the Equation (2). In order to avoid
constrained optimization issues, it is possible to re-
move the current constraints by using the following
parametrization:

mi(Ak) =
exp(αik)

2c

∑

l=1

exp(αil)

, (12)

where Ak, k = {1, . . . 2c} are the focal sets and the
αik are the (n × 2c) real parameters representing
the credal partition. Thus, the EVCLUS algorithm
carries out an iterative optimization of the objective
function (10) using a gradient-based procedure.

3. EVCLUS with constraints

3.1. Expression of the constraints

Let us consider two objects oi and oj . We recall
that a Must-Link constraint specifies that both ob-
jects belong to the same class while a Cannot-Link
constraint expresses the fact that the two objects do
not belong to the same class. A mass function re-
garding the joint class membership of both objects
may be computed from mi and mj in the Cartesian
product Ω2 = Ω × Ω. This mass function, denoted
mi×j , is the combination of the vacuous extension
of mi and mj . As shown in [21], we have for all
A, B ⊆ Ω, A 6= ∅, B 6= ∅:

mi×j(A × B) = mi(A) mj(B), (13)

and

mi×j(∅) = mi(∅) + mj(∅) − mi(∅) mj(∅). (14)

In Ω2, a Must-Link corresponds to the subset of
Ω: θij = {(ω1, ω1), (ω2, ω2), . . . (ωc, ωc)}, whereas
a Cannot-Link corresponds to its complement θij .
Then, the plausibilities pli×j(θij) and pli×j(θij) as-
sociated with mi×j can be determined:

pli×j(θij) =
∑

A∩B 6=∅

mi(A) mj(B), (15)

and

pli×j(θij) = 1 − mi×j(∅) − beli×j(θij), (16)

= 1 − mi×j(∅) −
c

∑

k=1

mi({ωk}) mj({ωk}).

As an example, the plausibilities associated to
the credal partition shown in Table 1 are expressed
in Table 2. Let us remark that the objects o1

and o2 belong to the same class (cf. Table 1);
this translates the plausibilities pl1×2(θ12) = 1 and
pl1×2(θ12) = 0. On the other hand, the objects
o1 and o3 do not belong to the same class (cf.
Table 1), and consequently their joint class plau-
sibilities are pl1×3(θ13) = 0 and pl1×3(θ13) = 1.
The credal partition does not give any information
about the class membership of the object o4: its
relationship with object o1 is unknown, and both
could either be in the same class or not. Thus,
pl1×4(θ14) = pl1×4(θ14) = 1. Object o5 does not
belong to Ω and represents an outlier. Hence,
pl1×5(θ15) = pl1×5(θ15) = 0.

Table 2: Plausibilities for the events θij and θij

F pl1×2(F ) pl1×3(F ) pl1×4(F ) pl1×5(F )
θij 1 0 1 0

θij 0 1 1 0

In summary, we deduce that the relationship be-
tween two objects can be expressed by using the
joint plausibilities of both events θij and θij . In-
deed, two objects oi and oj are surely in the same
class if pli×j(θij) = 0 and pli×j(θij) = 1. Inversely,
we assume that two objects oi and oj are surely in
a different class if pli×j(θij) = 0 and pli×j(θij) = 1.

3.2. Expression of the objective function

In a clustering algorithm, the credal partition is un-
known. However, prior information expressed by
pairwise constraints may be available. Let us de-
note by M and C the sets of Must-Link constraints
and Cannot-Link constraints, respectively. A sim-
ple formulation of the constraints can be proposed
using joint class plausibilities. Indeed, if we know
that two objects oi and oj have a Must-Link con-
straint, then pli×j(θij) must be low and pli×j(θij)
must be high. On the contrary, if we know that two
objects oi and oj have a Cannot-Link constraint,
then pli×j(θij) must be low and pli×j(θij) must be
close to 1. Let us define JCONST , the cost of vio-
lating pairwise constraints:

JCONST =
1

2(|M| + |C|)
(JM + JC) , (17)

JM =
∑

(oi,oj)∈M

pli×j(θij) + 1 − pli×j(θij), (18)

JC =
∑

(oi,oj)∈C

pli×j(θij) + 1 − pli×j(θij), (19)

where |M| and |C| denote the number of Must-Link
constraints and the number of Cannot-Link con-
straints, respectively.



The CEVCLUS algorithm should compute a
credal partition compatible with the input dissim-
ilarities and satisfying as much as possible the
instance-level constraints. Thus, we propose to min-
imize the following objective function:

JCEV CLUS = (1 − ξ)JEV CLUS + ξJCONST , (20)

where ξ ∈ [0 1] is a parameter that controls the
trade-off between the evidential model and the con-
straints.

Positivity constraints on mass functions as well
as constraint (2) vanish by employing (12). Like
in EVCLUS, a gradient based optimization is then
applicable to minimize the objective function.

4. Results

4.1. Methodology

The data sets used in the following experiments in-
clude a label for each object. The final partition P

is known and can be compared with a crisp parti-
tion P̂ computed by CEVCLUS. A popular measure
of agreement between two partitions P and P̂ is the
Rand Index (RI) defined as:

RI(P, P̂ ) =
2(a + b)

n(n − 1)
, (21)

where a (respectively, b) is the number of pairs of
objects simultaneously assigned to identical classes
(respectively, different classes) in P and P̂ , and n

is the total number of objects included in the data
set.

In order to get a crisp partition P̂ , we transform
the final credal partition found with CEVCLUS into
a fuzzy partition by using the pignistic transforma-
tion. Then we assign each object to the class with
maximal pignistic probability.

For each data set in the following experiments, a
single trial consists in running 10 times CEVCLUS
with different initializations, and retaining the solu-
tion with the minimum value of the objective func-
tion. Note also that the dissimilarity matrix consists
of the matrix of squared Euclidean distances.

4.2. Synthetic data set

We first illustrate how the constraint-based algo-
rithm CEVCLUS can be oriented towards a desired
solution using a suitable set of constraints. For this
purpose, we created an unlabeled synthetic data
set. It was generated according to a mixture of four
Gaussians in a two-dimensional space. We then de-
fined two labeled data sets by separating the data in
two different ways, as shown in Table 3. The data
sets are represented in Figures 1 and 2.

In the Toys1 data set, the two classes are sep-
arated by an horizontal boundary. The EVCLUS
algorithm applied for this data set gives a credal

Table 3: Construction of the Toys data set

N Nb Toys1 Toys2
µ σ objects classes classes

(0,0)
(

2 0
0 2

)

100 1 1
(0, 7) 100 1 2
(7, 0) 100 2 2
(7, 7) 100 2 2
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Figure 1: Toys1 data set.
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Figure 2: Toys2 data set.
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Figure 3: Hard credal partition obtained using EV-
CLUS.

partition with either vertical or horizontal bound-
ary between the classes, depending on the initial-
ization. The case of an horizontal boundary (cf.
Figure 3) does not correspond to the true partition
of the Toys1 data set.

Figure 4 shows that randomly adding 10 con-
straints makes it possible to guide the algorithm
towards the desired solution. Note that constraints
were selected by hand so that two constrained ob-
jets are not in the same Gaussian. The hard credal
partition represent the assignment of each object to
the subset A ⊆ Ω with the maximal degree of belief.
Parameter ξ was set to 0.2.
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Figure 4: Hard credal partition obtained for Toys1
using CEVCLUS with 10 constraints. Solid and
dashed lines represent Must-Link and Cannot-Link
constraints, respectively.

The Toys2 data set is an unbalanced data set
where the boundary between the two classes is non-
linear. Applying the EVCLUS algorithm on this
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Figure 5: Hard credal partition and contour lines of
the mass m({ω1}), obtained for Toys2 using CEV-
CLUS with 20 constraints.

data set gives the same solutions that on the Toys1
data set. Figures 5 and 6 show the hard credal
partition given by CEVCLUS with 20 constraints
randomly chosen and ξ = 0.5.
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Figure 6: Hard credal partition and contour lines
of the mass m(Ω), obtained for Toys2 using CEV-
CLUS with 20 constraints.

The degrees of belief of the objects for the sets
ω1 and Ω are also presented with contour lines in
those figures. We remark that the constraints al-
low us to modify the contour lines in such a way
that the algorithm finds the desired classes. It can
be also observed that the highest degree of belief
given to the set of total uncertainty Ω is located at
the boundary of the two classes. It can be noticed
that, unlike previously, the actual partition of the
data set Toys2 is not one of the partitions given
by EVCLUS, and is hard to reach as it is far from
the initial solutions. Thus, we decided to increase



the importance given to the constraints, by setting
ξ = 0.5.

4.3. Iris data set

The Iris data set is composed of three classes that
represent different species of Iris: Setosa, Virginica
and Versicolor. Each species includes 50 samples.
It should be emphasized that the distributions of
the classes are not spherical. However, we suppose
we do not have this information and we use the
Euclidean distances as proximity values.

Figure 7 shows the evolution of the average RI
and RI on unconstrained objects (computed over
100 trials) according to the number of constraints.
Remark that ξ is set to 0.2 and five focal elements
are selected: the singletons, Ω and ∅.
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Figure 7: Averaged Rand Index and 95% confidence
interval as a function of the number of randomly
selected constraints.

Adding constraints not only increases the RI,
but also improves the RI computed over uncon-
strained objects. This shows that including con-
straints leads the algorithm towards a better parti-
tion. Remark that adding a small amount of ran-
domly chosen constraints seems to have a negative
impact on the performances, as we can observe on
the Figure 7. This happens when constrained ob-
jects have been misclassified with a high degree of
belief. The same behavior has been noticed in many
semi-supervised clustering algorithms and has been
discussed in [10, 24].

5. Conclusion

We have developed a new algorithm, called CEV-
CLUS, based on the belief functions theory and that
makes it possible to incorporate background knowl-
edge in the classification process. It is an exten-
sion of the relational evidential clustering algorithm
EVCLUS. CEVCLUS computes a credal partition
from a dissimilarity matrix. This notion of credal

partition generalizes those of crisp, fuzzy and pos-
sibilistic partitions. Our contribution consists in
introducing background knowledge in the cluster-
ing process of EVCLUS. This prior information is
formulated as pairwise constraints on instances: a
Must-Link constraint (respectively, a Cannot-Link
constraint) indicates that two objects belong (re-
spectively, do not belong) to the same class.

Experiments show that adding a few number of
constraints makes it possible to guide the algorithm
towards a desired solution, even for unbalanced and
non-spherical classes. The quality of the solution
depends on the number of constraints and on the
trade-off between the evidential model and the con-
straints. As a rule, the value of the parameter ξ

should not be close to 1. Furthermore, the value of
ξ should preferably be low when there are few con-
straints, to prevent constrained objects from being
misclassified with a high degree of belief.

Future work may be conducted in the choice of
the set of constraints. Indeed, we are interested
in adding a small number of very informative con-
straints. The expected result is to decrease the
needed quantity of prior-information and to increase
the accuracy of the final partition. Such a method,
known as active learning [15, 16], automatically se-
lects pairwise constraints during the clustering pro-
cess.
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