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Abstract— Fuzzy or hard partitioning methods aim at group-
ing objects according to their similarity. Recently, a new
concept of partition based on belief function theory, called
credal partition, has been proposed and has been shown to
generate meaningful description of the data. Hard, fuzzy or
credal partitions are generally obtained using unsupervised
learning methods, using only the numeric description between
two objects to compute their similarity. However, in some
applications, some kind of background knowledge about the
objects or about the clusters is available. To integrate this
auxiliary information, constraint-based (or semi-supervised)
methods have been proposed. A popular type of constraints
specifies whether two objects are in the same cluster (must-
link) or in different clusters (cannot-link). We propose here
a new algorithm, called CECM, which computes a credal
partition using a constrained clustering method. We show how
to translate the available information into constraints, and how
to integrate them in the search of the credal partition. The
paper ends with some experimental results. Results of CECM
are compared to other constrained clustering algorithms. Then
an application in image segmentation is described.

I. INTRODUCTION

Clustering is a classical data analysis method that aims at
grouping a set of objects into clusters. Classically, clustering
proceeds from unsupervised learning: indeed, the clusters
are based on the similarity between the descriptors of the
objects only. However, there are some situations in which
some background knowledge about the problem is available.
This extra-information may be used to guide the clustering
algorithm towards a desired solution, and thus to improve the
classification accuracy. Prior information can be exploited at
different levels of the classification such as: the cluster level
with, for instance, a minimum distance neighbourhood [1],
the model level with the requirement of balanced clusters [2]
or the specification of non desired solutions [3], or at the
instance level. Wagstaff [4] proposed to introduce two types
of instance-level constraints. A must-link constraint specifies
that two objects have to be in the same cluster; a cannot-
link constraint, that they should not be put in the same
cluster. Such pairwise constraints have been considered and
integrated in many unsupervised algorithms such as the hard
or the fuzzy c-means (FCM), and have recently become a
topic of great interest [5], [6], [7], [1], [8]. They have been
incorporated in many different ways, generally by including
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a penalty term in the objective function [9], [10] or by
altering the distances between objects with respect to the
constraints [11], [5].

In the FCM algorithm, each object may belong to one or
more clusters with different degrees of membership. These
degrees of membership are stored into a fuzzy partition
matrix U = (uik) and are calculated by minimizing a suitable
objective function subject to the constraints

∑
k uik = 1 ∀i.

Each number uik ∈ [0, 1] is interpreted as the degree of
membership of object i to cluster k. The FCM algorithm is
known to produce sometimes counterintuitive results, and to
have poor robustness against noise and outliers. Therefore,
possibilistic methods [12], [13], and more recently algorithms
using the theoretical framework of belief functions [14], [15],
[16], have been proposed. These latter are based on a new
concept of partition, referred to as a credal partition, which
extends the existing concepts of hard, fuzzy and possibilistic
partitions. A credal partition consists in allocating, for each
object, a mass of belief to any subset of the set of clus-
ters Ω = {ω1, . . . , ωc}. Experiments have shown that this
additional flexibility allows us to gain a deeper insight into
the data and to improve robustness with respect to outliers.
The Evidential C-Means (ECM) algorithm [15], that derives
a credal partition from data, can be considered as a direct
extension of FCM.

In this paper, we propose to introduce pairwise constraints
in ECM. The resulting algorithm, called CECM, thus com-
bines the advantages of adding background knowledge and
using belief functions. Besides, we present a formulation of
ECM that adapts the metric using a Mahalanobis distance,
so that the constraints may be more easily satisfied. The
remaining of this paper is organized as follows. In Section
II, the main fuzzy partitioning algorithms from which ECM
is derived are presented. Then, a brief overview of the theory
of belief functions is provided, and particularly the notion of
credal partition. Section III introduces the CECM algorithm.
First, we show how to translate in a natural way the available
information in terms of constraints on belief masses. Then
we explain how to integrate these constraints in the search
of the credal partition. In Section IV, we also describe
a version of CECM allowing to automatically modify the
metric according to the constraints. Section V describes some
experiments. Several results are presented. We first compare
the performances of CECM with those of other constrained
clustering algorithms. We also demonstrate the usefulness of
the method with an an application in image segmentation.
Finally, section VI concludes this paper.



II. BACKGROUND

A. Fuzzy C-Means And Variants

Let {x1, . . . ,xn} be a set of vectors in Rp describing n
objects to classify in the set Ω = {ω1 . . . ωc}. Each cluster
ωk, k = 1, c is represented by a prototype (or centroid)
vk ∈ Rp. Let V denote the matrix composed of the cluster
centroids, and let U = (uik) define a fuzzy partition matrix
that contains the degrees of membership of each object to
each cluster. The FCM algorithm [17] computes V and U so
as to minimize the following objective function:

JFCM(U, V ) =

n∑
i=1

c∑
k=1

uβikd
2
ik, (1)

In the objective function (1), dik represents the Euclidean
distance between the object xi and the centroid vk. Parame-
ter β > 1 is a weighting exponent that controls the fuzziness
of the partition. The objective function is minimized using an
iterative algorithm, which alternatively optimizes the cluster
centers and the membership degrees. The update formulas
of the parameters are obtained by computing the Lagrangian
formulation of the optimization problem and writing its
Karush-Kuhn-Tucker (KKT) optimality conditions [17]. We
obtain:

vk =

∑n
i=1 u

β
ikxi∑n

i=1 u
β
ik

k = 1, c, (2)

uij =
d
−2/(β−1)
ij∑c

k=1 d
−2/(β−1)
ik

i = 1, n j = 1, c. (3)

The algorithm starts from an initial guess for either the
partitioning matrix or the cluster centers and iterates until
convergence.

To detect noisy data or outliers, Davé [18] proposed a
variant of FCM called the “noise-clustering” algorithm (NC).
It consists in adding to the c initial clusters a “noise” cluster.
A parameter ρ defines the distance of this cluster to the
others, and thus controls the amount of data considered as
outliers. The membership ui∗ of an object i to the noise
cluster is given by:

ui∗ = 1−
c∑

k=1

uik i = 1, n, (4)

The objective function to be minimized thus becomes:

JNC(U, V ) =

n∑
i=1

c∑
j=1

uβijd
2
ij +

c∑
i=n

ρ2uβi∗. (5)

As in FCM, writing the KKT conditions of the Lagrangian
leads to direct adaptation formulas for the memberships and
the cluster centers.

The Gustafson and Kessel algorithm [19] extends FCM
by using an adaptive distance. Thus, clusters of different
geometrical shapes may be detected. Each cluster has its

own norm-inducing matrix Sk defined as its fuzzy covariance
matrix:

Sk =

∑n
i=1 u

β
ik(xi − vk)(xi − vk)t∑n

i=1 u
β
ik

k = 1, c i = 1, n.

(6)
The distance between an object xi and a center vk is then:

d2
ik = det(Sk)

1
p (xi − vk)tS−1

k (xi − vk). (7)

Equation (6) can be obtained by imposing a constant
volume to each cluster and using Lagrange multipliers,
except for the normalization by the factor

∑n
i=1 u

β
ik (which

could be omitted). Additionally, Gustafson and Kessel show
that the adaptation formulas of FCM for the membership
degrees and the centers remain valid as they do not depend
on the metric.

B. Belief Functions

The Dempster-Shafer theory of evidence [20], [21] (or
belief function theory) is a theoretical framework for rep-
resenting partial and unreliable information. In this section,
only the main concepts are recalled.

Let ω be a variable taking values in a finite set Ω =
{ω1, . . . , ωc} called the frame of discernment. Partial knowl-
edge regarding the actual value of ω can be represented by
a basic belief assignment (bba) m, which is an application
from the power set of Ω in the interval [0, 1] such that∑

A⊆Ω

m(A) = 1. (8)

Any subset A ⊆ Ω such that m(A) > 0 is called a focal set
of m. The quantity m(A) can be interpreted as a fraction of
a unit mass of belief that is allocated to A and that cannot
be allocated to any subset of A. A bba m expresses total
ignorance if m(Ω) = 1, and full certainty whenever m(A) =
1 for some A ⊆ Ω (m is then said to be a certain bba).
If all the focal sets of m are singletons, m is similar to
a probability distribution: it is then called a Bayesian bba.
A bba m such that m(∅) = 0 is said to be normalized.
Otherwise, m(∅) may be interpreted as the belief that the
actual value of ω does not belong to Ω [22].

Given a bba m, the plausibility function pl : 2Ω → [0, 1]
and the belief function bel : 2Ω → [0, 1] are defined by:

pl(A) =
∑

B∩A6=∅

m(B) ∀A ⊆ Ω, (9)

bel(A) =
∑

B⊆A,B 6=∅

m(B) ∀A ⊆ Ω. (10)

Functions bel and pl are linked by the following relation:

pl(A) = 1−m(∅)− bel(A), (11)

where A denotes the complement of A. The quantity bel(A)
is interpreted as a degree of justified support given to A by
the available evidence, and pl(A) measures to what extent
one fails to believe in hypotheses incompatible with A.



In order to make a decision regarding the value of ω,
a bba m may be transformed into a pignistic probability
distribution [21] BetP . For a normal bba, we have:

BetP (ω) =
∑
ω∈A

m(A)

|A|
∀ω ∈ Ω, (12)

where |A| denotes the cardinality of A ⊆ Ω. If m(∅) 6= 0, a
normalization step must precede the pignistic transformation.
Various methods may be applied. In particular, Dempster’s
normalization consists in dividing all the masses by 1−m(∅),
whereas Yager’s normalization transfers m(∅) to Ω [23].

C. ECM Algorithm

Masson and Denœux proposed a credibilistic version of
Davé’s algorithm [15], where the fuzzy partition matrix U is
replaced with a more general kind of partition M , called
a credal partition. Partial knowledge regarding the class
membership of an object i is represented by a bba mi on
the set Ω of possible classes. Thus, any subset A of Ω may
receive support. This representation enables to model a wide
variety of situations ranging from complete ignorance to full
certainty, as illustrated in Example 1.

Example 1: Let us consider a collection of four objects
that need to be classified into two classes. A credal partition
is presented in Table I. The class of the first object is known
with certainty, whereas the class of the second object is
completely unknown. We have probabilistic knowledge of the
actual class of the third object. The last object is considered
to be an outlier, what is represented by allocating the whole
unit mass to the empty set.

TABLE I
EXAMPLE OF A CREDAL PARTITION

A m1(A) m2(A) m3(A) m4(A)
∅ 0 0 0 1
{ω1} 1 0 0.3 0
{ω2} 0 0 0.7 0

Ω 0 1 0 0

A credal partition can thus be seen as a general model
of partitioning. When each mi is a certain bba, which
corresponds to a situation of complete knowledge, then M
defines a conventional, crisp partition of the set of objects.
If all the mi are Bayesian, M specifies a fuzzy partition.
With focal elements being singletons of Ω or the empty set,
a partition with a noise cluster as in the NC algorithm is
recovered.

The ECM algorithm derives a credal partition from data.
Let mij denote the degree of belief that object xi belongs
to the subset Aj ⊆ Ω. Deriving a credal partition im-
plies computing, for each object xi, the quantities mij =
mi(Aj) ∀Aj 6= ∅, Aj ⊆ Ω in such a way that a low (resp.,
high) value of mij is found when the distance dij between
xi and Aj is high (resp., low). The distance dij between an
object and a set of classes Aj is defined as follows. Each
class ωl is represented by a center vl ∈ Rp. Then, for each
subset Aj ⊆ Ω, Aj 6= ∅, a centroid vj is calculated as the

barycenter of the centers associated to the classes in Aj :

vj =
1

|Aj |

c∑
l=1

sljvl, (13)

with
slj =

{
1 if ωl ∈ Aj ,
0 else. (14)

The distance dij between xi and the focal set Aj may then
be defined by:

dij = ||xi − vj ||. (15)

The ECM algorithm searches for the M and V matrices that
minimize a criterion similar to that of the NC algorithm:

JECM(M,V ) =

n∑
i=1

∑
Ak 6=∅

|Ak|αmβ
ikd

2
ik +

n∑
i=1

ρ2mβ
i∅, (16)

subject to: ∑
k/Ak⊆Ω,Ak 6=∅

mik +mi∅ = 1 ∀i = 1, n, (17)

where mi∅ denotes the mass of the object xi allocated to the
empty set. The empty set is interpreted as a noise cluster;
thus, it is dealt with separately. The parameter ρ represents
the distance of all the objects to the empty set. An additional
weighting coefficient |Ak|α is introduced to penalize the
allocation of belief to subsets with high cardinality, the
exponent α allowing us to control the degree of penalization.

As in FCM or NC, the credal partition is found by
iterative optimization with the alternate update of the masses
and the centroids. The KKT conditions gives the following
adaptation rule for the masses: for i = 1, . . . , n and Aj 6= ∅,

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak 6=∅ |Ak|
−α/(β−1)d

−2/(β−1)
ik + ρ−2/(β−1)

(18)

and
mi∅ = 1−

∑
Aj 6=∅

mij ∀i = 1, n. (19)

Note that these update equations are very similar to those
of the NC algorithm except that there are 2c values mij to
compute instead of c+ 1 fuzzy membership degrees uij . A
more complex update rule is found for the centroids, since the
optimality conditions lead to the resolution of a linear system
at each step of the optimization process. Let B be a matrix
of size (c× p) defined for l = 1, . . . , c and q = 1, . . . , p by:

Blq =

n∑
i=1

xiq
∑
Aj3ωl

|Aj |α−1mβ
ij (20)

and H a matrix of size (c× c) given (k, l = 1, . . . , c) by:

Hlk =
∑
i

∑
Aj⊇{ωk,ωl}

|Aj |α−2mβ
ij . (21)

With these notations, V is solution of the following linear
system:

HV = B, (22)



which can be solved using a standard linear system solver.
Details on the calculation of Equations (18) to (22) are
provided in [15]. Note that, in practice, the resolution of (22)
is performed columnwise: each column of V is the solution
of a linear system of c equations and c unknowns. As FCM
and its variants, the algorithm starts with an initial guess for
either the credal partition M or the cluster centers V and
alternates the optimization of M and V until convergence.

D. Interpreting A Credal Partition

As underlined in [15], a credal partition is a rich represen-
tation that carries a lot of information about the data. In [15],
various tools helping the user to interpret the results of ECM
were suggested. First, a credal partition can be converted into
classical clustering structures. For example, a fuzzy partition
can be recovered by computing the pignistic probability
BetPi({ωk}) induced by each bba mi and interpreting this
value as the degree of membership of object i to cluster
k. Another interesting way of synthesizing the information
is to assign each object to the subset of classes with the
highest mass. In this way, one obtains a partition in at most
2c groups, which is referred to as a hard credal partition.
This hard credal partition allows us to detect, on the one
hand, the objects that can be assigned without ambiguity to
a single cluster and, on the other hand, the objects lying at
the boundary of two or more clusters.

Example 2: Let us consider the credal partition presented
in Table I. The corresponding pignistic probabilities (using
Yager’s normalization) are given in Table II.

TABLE II
PIGNISTIC PROBABILITIES FOR THE CREDAL PARTITION OF TABLE I

x1 x2 x3 x4

BetP ({ω1}) 1 0.5 0.3 0.5
BetP ({ω2}) 0 0.5 0.7 0.5

III. ECM WITH CONSTRAINTS

A. Expression Of The Constraints

Let xi and xj be two objects associated with mass
functions mi and mj . A mass function regarding the joint
class membership of both objects may be computed from
mi and mj in the Cartesian product Ω2 = Ω×Ω. This mass
function, denoted mi×j , is the combination of the vacuous
extensions of mi and mj [21]. As shown in [14], we have,
for A,B ⊆ Ω, A 6= ∅, B 6= ∅:

mi×j(A×B) = mi(A) mj(B), (23)

mi×j(∅) = mi(∅) +mj(∅)−mi(∅) mj(∅). (24)

From mi×j , we can compute the plausibility that the two
objects xi and xj belong or not to the same class. In Ω2,
the event “Objects xi and xj belong to the same class” cor-
responds to the subset θ = {(ω1, ω1), (ω2, ω2), . . . (ωc, ωc)},
whereas the event “Objects xi and xj do not belong to the
same class” corresponds to its complement θ. The corre-
sponding plausibilities are the following:

pli×j(θ) =
∑

A∩B 6=∅

mi(A) mj(B), (25)

pli×j(θ) = 1−mi×j(∅)−
c∑

k=1

mi({ωk})mj({ωk}). (26)

Example 3: Let us consider a new collection of four
objects to be classified into two classes. A credal partition
expressing certain knowledge about the membership of the
objects is given in Table III. Table IV gives the mass
functions of the joint membership of x1 with the three other
objects. The associated plausibilities pl(θ) and pl(θ) are
given in Table V.

TABLE III
CREDAL PARTITION TO EXPRESS CONSTRAINTS

A m1(A) m2(A) m3(A) m4(A)
∅ 0 0 0 0
{ω1} 1 1 0 0
{ω2} 0 0 1 0

Ω 0 0 0 1

TABLE IV
MASSES OF JOINT MEMBERSHIP

F = A×B m1×2(F ) m1×3(F ) m1×4(F )
{ω1} × {ω1} 1 0 0
{ω1} × {ω2} 0 1 0
{ω1} × Ω 0 0 1
{ω2} × {ω1} 0 0 0
{ω2} × {ω2} 0 0 0
{ω2} × Ω 0 0 0
Ω× {ω1} 0 0 0
Ω× {ω2} 0 0 0
Ω× Ω 0 0 0

TABLE V
PLAUSIBILITIES FOR THE EVENTS θ AND θ

F pl1×2(F ) pl1×3(F ) pl1×4(F )
θ 1 0 1
θ 0 1 1

This simple example shows how the joint membership
of two objects may be represented using the plausibilities
pl(θ) and pl(θ). In simple terms, the relevant information in
Table V is contained in the zeros of these plausibilities. For
example, nothing can be said about the joint membership of
object x1 and x4, as both of these plausibilities are equal to
1. On the contrary, the fact that plΩ×Ω

1×2 (θ) = 0 indicates that
(x1 and x2) are certainly in the same cluster. Equivalently,
the null value of the plausibility plΩ×Ω

1×3 (θ) expresses the
impossibility that x1 and x3 belong to the same class. These
relationships will be used in the next section to propose a
new formulation of ECM integrating pairwise constraints on
instances.

B. Objective Function Of CECM

Let us now assume that the credal partition is unknown and
that we are given some pairwise constraints. As explained in



the introduction, we consider that these constraints are must-
link or cannot-link constraints. LetM denote the set of pairs
of objects constrained by a must-link and C the set of pairs
of objects constrained by a cannot-link. One has to seek for
a credal partition that reflects both the similarities computed
from the data and the constraints. A natural requirement is
that pli×j(θ) be as low as possible if (xi,xi) ∈ C. In the
same way, (xi,xi) ∈ M implies that pli×j(θ) should be as
low as possible. To achieve this goal, we suggest to integrate
penalty terms into the ECM criterion and we propose to
minimize the following objective function:

JCECM(M,V ) = JECM(M,V ) +
γ

|M|
∑

(xi,xj)∈M

pli×j(θ)

+
η

|C|
∑

(xi,xj)∈C

pli×j(θ), (27)

such that the constraints (17) are respected. The second and
third terms represent, respectively, the cost of violating the
must-link the cannot-link constraints. The coefficients γ and
η control the tradeoff between the objective function of ECM
and the constraints. Note that we choose to express the
penalization using plausibilities rather than beliefs since this
quantities depends only on the mass given to singletons.

As in FCM, NC and ECM, we propose an alternate
optimization scheme in order to fix the partition matrix M
and the centroid matrix V . First, note that the two penalty
terms added to (27) do not depend on the cluster centroids.
The same update scheme for the centroids (Equations (20) to
(22)) can thus be used in CECM. Suppose furthermore that
we fix β = 2; using Equation (26), we get:

JCECM(M,V ) =

n∑
i=1

∑
Ak 6=∅

|Ak|αm2
ikd

2
ik +

n∑
i=1

ρ2m2
i∅

− γ

|M|
∑

(xi,xj)∈M

mi×j(∅)−
γ

|M|
∑

(xi,xj)∈M

beli×j(θ)

+
η

|C|
∑

(xi,xj)∈C

pli×j(θ) + γ. (28)

Note that the last term of Equation (28), which is constant,
will be omitted in the rest of the paper. It can be seen
that the objective function is, in that case, quadratic with
respect to the mij . As we have linear constraints, a classical
optimization method [24] can be used and the convergence
is insured in a reasonable time. Note that the complexity
of our approach is linear with the respect to the number of
samples and is exponential with the respect to the number of
classes, so the algorithm remains limited to a few hundreds of
samples and a small number of classes (c ≤ 5). The overall
procedure is summarized in Algorithm 1.

IV. CECM WITH AN ADAPTIVE METRIC

A. Model

The use of a Mahalanobis distance, instead of an Euclidean
distance like in the ECM algorithm, may be interesting in
case of elliptical clusters. Using an adaptive metric can be

Algorithm 1 CECM with an Euclidean metric
Input: Number c of desired clusters, n objects x1, ...,xn,
set of cannot-link C, set of must-link M
Output: Credal partition matrix M , centroid matrix V
Initialization of V
repeat

1) Calculate the new masses by solving the quadratic
programming problem defined by (28) subject to (17).
2) Calculate the new centroids by solving the linear
system defined by Equations (20) to (22).

until No significant change in V between two successive
iterations

highly desirable when using constraints, in particular when
these constraints contradict a spherical model. To modify the
previous algorithm, we follow an approach inspired from
Gustafson and Kessel [19], [25]. Let Sl denote a (p × p)
matrix associated to cluster ωl (l = 1, c) inducing a norm
||x||2Sl

= xtSlx. Using the same approach as for the
centroids, we compute the matrix Sj associated with a non
singleton Aj by averaging the matrices associated with the
classes ωk ∈ Aj :

Sj =
1

|Aj |

c∑
l=1

sljSl, ∀Aj ⊆ Ω, Aj 6= ∅. (29)

The distance d2
ij between xi and any set Aj 6= ∅ is then:

d2
ij = ||xi − vj ||2Sj

= (xi − vj)
tSj(xi − vj). (30)

The new criterion to be minimized thus becomes:

JCECM(M,V, S1, · · · , Sc) =
n∑
i=1

∑
Ak 6=∅

|Ak|αm2
ik||xi − vj ||2Sj

+

n∑
i=1

ρ2m2
i∅

+
γ

|M|
∑

(xi,xj)∈M

pli×j(θ) +
η

|C|
∑

(xi,xj)∈C

pli×j(θ). (31)

Note that the minimization of (31) with respect to the masses
is independent of the metric, so that the way of deriving the
masses by a constrained quadratic optimization is unchanged.
Unlike in [19], the determination of the centers takes here
the metric explicitly into account, as shown below.

1) Optimization With Respect To The Cluster Centers:
We first consider that M and the matrices Sl (l = 1, c)
are fixed. The minimization of JCECM with respect to V is
an unconstrained optimization problem. Computing partial
derivatives of JCECM with respect to the centers vk gives c
update equations for the centers vk:∑

i

∑
Aj3ωl

|Aj |α−1m2
ijSjxi =

∑
k

∑
i

∑
Aj⊇{ωk,ωl}

|Aj |α−2m2
ijSjvk l = 1, c. (32)



Let F(l,i) denote the (p× p) matrix:

F(l,i) =
∑
Aj3ωl

|Aj |α−1m2
ijSj l = 1, c i = 1, n, (33)

and G(l,k) denote the (p× p) matrix:

G(l,k) =
∑
i

∑
Aj⊇{ωk,ωl}

|Aj |α−2m2
ijSj k, l = 1, c. (34)

Next, we form, from these two (p × p) matrices, two
new matrices F and G, of size (cp × np) and (cp × cp),
respectively:

F =


F(1,1) F(1,2) · · · F(1,n)

F(2,1) F(2,2) · · · F(2,n)

...
...

. . .
...

F(c,1) F(c,2) · · · F(c,n)

 (35)

G =


G(1,1) G(1,2) · · · G(1,c)

G(2,1) G(2,2) · · · G(2,c)

...
...

. . .
...

G(c,1) G(c,2) · · · G(c,c)

 (36)

Let us stack all objects xi in a same vector X of size
(np× 1) and rearrange matrix V in the form of a vector of
size (cp× 1) such that:

X =

 x1

...
xn

 V =

 v1

...
vc


With all these notations, vector V is solution of the following
linear system:

GV = FX. (37)

2) Optimization With Respect To The Matrices Sl: We
now consider that M and V are fixed. To determine the matri-
ces Sl, we follow the same line of reasoning as Gustafson and
Kessel. Imposing that the clusters have a constant volume,
using the constraints det(Sl) = 1 for all l = 1, c, is necessary
to avoid the degenerate solution consisting of matrices Sl
with zero entries. To solve the constrained minimization
problem with respect to S1, · · · , Sc, we introduce c Lagrange
multipliers λi and write the Lagrangian:

L(S1, · · · , Sc, λ1, · · · , λc) = JCECM(M,V )

−
c∑

k=1

λk (det(Sk)− 1) (38)

Applying the KKT conditions to this Lagrangian leads to the
following update equations for the covariance matrices Sl:

Sl = det(Σl)
1
p Σ−1

l l = 1, c, (39)

with Σl being defined, for l = 1, . . . , c, by:

Σl =
∑
i

∑
Aj3ωl

m2
ij |Aj |α−1(xi − vj)(xi − vj)

t. (40)

Note that Σl can be considered as the analog in the evidential
framework of the fuzzy covariance matrix. Furthermore, Σl

is invertible since each (xi − vj)(xi − vj)
t is symmetric,

positive and semi-definite; hence, so is their weighted sum.
The overall CECM procedure with an adaptive metric is

summarized in Algorithm 2.

Algorithm 2 CECM with an adaptive metric
Input: Number c of desired clusters, n objects x1, ...,xn,
set of cannot-link C, set of must-link M
Output: Credal partition matrix M , centroid matrix V , set
of matrices Sl l = 1, c
Initialization of V
repeat

1) Calculate the new masses by solving the quadratic
programming problem defined by (31) subject to (17).
2) Calculate the new centroids by solving the linear
system defined by Equation (32).
3) Calculate the new matrices Sl, l = 1, c using (40)
and (39).

until No significant change in V between two successive
iterations

V. EXPERIMENTAL RESULTS

A. Methodology

We show here how adding pairwise constraints may im-
prove the classification accuracy. We use two real classical
data sets for which a reference partition is known. Various
measures may be used to measure the degree to which the
predicted class labels match the actual ones. Since the label
of each cluster is arbitrary and does not reflect any ground
truth (unlike in supervised classification), a practical way is
to check whether pairs of points are assigned to the same
cluster or not in the predicted and actual partitions. Among
the criteria based on this principle, the F-measure is one
of the most popular. It is defined as the harmonic mean of
two quantities traditionally used in information retrieval, the
precision and recall. More precisely the pairwise F-measure
is defined as:

F-measure =
2× Prec× Recall

Prec+Recall
, (41)

with

Prec =
# pairs correctly predicted in the same cluster

# total pairs predicted in the same cluster
,

(42)
and

Recall =
# pairs correctly predicted in the same cluster

# total pairs actually in the same cluster
.

(43)
The performances of CECM are compared to those of

unsupervised clustering algorithms: FCM [17] and K-Means.
We also provide comparison with other classical algorithms
incorporating pairwise constraints:
• COP-KMeans [4], which introduces constraints in the

K-Means algorithm and ensures that they are satisfied
at each iteration.
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• MPCKM-S-D clustering [26], which utilizes constraints
for seeding the initial clusters and then apply a metric
learning scheme by using a single (S) and diagonal (D)
parametrized matrix for all the clusters 1.

B. Results On Two Real Data Sets

Experiments were conducted on two data set from the UCI
repository: Iris and Letters. The Iris data set is composed of
three classes of patterns in a four-dimensional space of 50
data each. For the Letters data set, we selected three classes
corresponding to the letters {I, J, L}. Then, following [26],
we randomly selected 10% of the data in each class, so that
we obtained 227 data in a 16-dimensional space. The three
classes are roughly balanced.

We used two clustering schemes for CECM: CECM-
eucl, which exploits the Euclidean distance, and the CECM-
mah, which introduces the Mahalanobis distance. We used
parameter values of γ = η = 1 and ρ2 = 1000 for both
schemes and both data sets.

Figures 1 and 2 show the average F-Measure plotted
against a varying number of constraints. Averages were
computed on 100 experiments using randomly selected con-
straints. Must-link and Cannot-link constraints are set us-
ing the true known classes. Note that noisy or incoherent
constraints, especially if they are prevalent in the set of
constraints, are likely to deteriorate the solution provided
by CECM. The coherence of the constraints should thus be
checked before running CECM (see e.g. [27]).

It may be seen that constraint-based approaches outper-
form unsupervised clustering. Algorithms using a metric
learning (MPCKM-S-D and CECM-mah) give the best re-
sults. This was predictable since the data sets processed have
non-spherical classes. CECM-mah produces better clustering
than MPCKM-S-D. Likely, the reason is that the former
method uses a full distance matrix for each class while the
latter involves a single matrix for all the classes. The results

1The code is available at http://www.cs.utexas.edu/users/ml/risc/
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published in [26] suggest that MPCKM-S-D requires a high
number of constraints to learn the metric. This is particularly
the case for full matrices: indeed using diagonal matrices
seems to give better results when the number of constraints
is low. Conversely to the other algorithms, COP-KMeans
requires that all the constraints be satisfied; this explains
why this method outperforms the others (except CECM-mah)
for a high number of constraints. The drawback is that the
constraints may not be consistent with the initial partition and
therefore the optimisation problem may be infeasible [1].

C. Image Segmentation

The interest of CECM will now be illustrated using an
example in image segmentation. An image of a plane is given
in Figure 3. The aim was to isolate the plane from the rest
of the image.

In a first experiment we used ECM. We consider that there
is no outlier in the image, so we force the mass on the empty
set to be as small as possible by setting ρ2 to a high value. So
starting from the gray levels of the pixels (rescaled between
0 and 1), ECM, with c = 2, α = 1, and ρ2 = 10 and V
initialized with FCM, finds a hard credal partition represented
in Figure 3. It may be seen that the ECM fails to isolate
properly the plane. In a second experiment, we introduced
constraints on the partition as shown in Figure 4. The pixels
belonging to the region delimited by hand are mutually linked
by a must-link constraint. CECM with an adaptive metric
was run using FCM for the initialization of V and with the
following parameters: c = 2, α = 1, γ = 1, ρ2 = 10. The
credal partition is presented in the right part of Figure 4. It
may be seen that the constraints made it possible to raise
the indetermination concerning the pixels allocated to Ω and
thus to properly isolate the plane. Note that the remaining
pixels allocated to Ω are lying at the boundary between the
plane and the sky. As a matter of comparison, are also given
in Figure 5 the hard partitions obtained from the pignistic
probabilities computed from the results of ECM and CECM.



Fig. 3. (Left) Original image; (Right) Credal partition obtained with ECM
(white area: ω1, grey area: ω2, black area: Ω).

Fig. 4. (Left) Must-link constraints; (Right) Credal partition obtained with
CECM (white area: ω1, grey area: ω2, black area: Ω).

VI. CONCLUSION

In this paper, we have presented a new clustering method
called CECM based on the belief functions theory. It is an
extension of the evidential clustering algorithm ECM. The
contribution of the paper is twofold. First, we have proposed
to add pairwise constraints. Second, we have introduced
an adaptive metric in the algorithm. This distance, more
general than the Euclidean distance, treats non spherical
classes and adjusts to the add of constraints. Experiments
have proved that these two extensions make it possible to
guide the algorithm towards desired solutions. Moreover they
showed that our algorithm gives good results compared with
other constraint-based methods since the former requires less
constraints to give satisfying solutions.

REFERENCES

[1] I. Davidson and S. S. Ravi, “Clustering with constraints: Feasibility
issues and the k-means algorithm,” in Proceedings of the Fifth SIAM
International Conference on Data Mining. Society for Industrial
Mathematics, 2005, p. 138.

[2] S. Zhong and J. Ghosh, “Scalable, balanced model-based clustering,”
in Proc. 3rd SIAM Int. Conf. Data Mining, 2003, pp. 71–82.

[3] D. Gondek and T. Hofmann, “Non-redundant data clustering,” Knowl-
edge and Information Systems, vol. 12, no. 1, pp. 1–24, 2007.

[4] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained k-
means clustering with background knowledge,” in Proceedings of the
Eighteenth International Conference on Machine Learning, 2001, pp.
577–584.

[5] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric
learning, with application to clustering with side-information,” in
Advances in Neural Information Processing Systems 15. MIT Press,
2003, pp. 505–512.

[6] S. Basu, M. Bilenko, and R. Mooney, “A probabilist framework for
semi-supervised clustering,” in Proceedings of the ACM SIGKDD
International Conference on knowledge discovery and data mining,
2004, pp. 59–68.

[7] K. Wagstaff, “Value, cost, and sharing: Open issues in constrained
clustering,” Lecture Notes in Computer Science, vol. 4747, p. 1, 2007.

Fig. 5. (Left) Hard partition computed from ECM; (Right) Hard partition
computed from CECM.

[8] Y. Liu, R. Jin, and A. Jain, “Boostcluster: boosting clustering by
pairwise constraints,” in Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2007, pp. 450–459.

[9] S. Basu, A. Banerjee, and R. Mooney, “Active semi-supervision
for pairwise constrained clustering,” in Proceedings of the SIAM
International Conference on Data Mining, 2004, pp. 333–344.

[10] N. Grira, M. Crucianu, and N. Boujemaa, “Active semi-supervised
fuzzy clustering,” Pattern Recognition, vol. 41, no. 5, pp. 1851–1861,
2008.

[11] D. Klein, S. Kamvar, and C. Manning, “From instance-level constraints
to space-level constraints: Making the most of prior knowledge in data
clustering,” in Machine Learning - International Workshop -, 2002, pp.
307–314.

[12] R. Krishnapuram and J. Keller, “A possibilistic approach to clustering,”
IEEE Transactions on Fuzzy Systems, vol. 1, no. 2, pp. 98–110, 1993.
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